Electromagnetic radiation from the tiniest rotor ⁸Be V.M. Datar ex TIFR, BARC, Mumbai H_2 \leq 1

Plan of talk

- 1. Introduction
- 2. EM transition from 4^+ to 2^+ in ⁸Be
- 3. Results
- 4. Summary and future possibilities

1. Introduction

- Electromagnetic signals are "clean" probes of nuclei However, when in competition with strong process, cross sections/branching is small (< 10⁻³)
- > ⁸Be is unstable in the ground state ($\tau \sim 10^{-16}$ sec)
 - \Rightarrow electron scattering on it not possible

 γ -decay from excited states (resonances) possible but challenging

> Nuclear Astrophysics

⁸Be important in stellar nucleo-synthesis of ¹²C, ¹⁶O,...

- \Box 3- α reaction proposed by Bethe (1939)
- \Box 2 step process: resonant production of ⁸Be, then α -
- capture Hoyle (1946), Opic (1952), Saltpeter (1953)
- □ Resonance in ¹²C at ~7.6 MeV predicted Hoyle (1953)
 - Found by Dunbar et al (1953)

- Clustering in nuclei : α-clusters special
 Binding Energy ~ 28 MeV, 1st exc. state @ 20 MeV
 ⁸Be simplest α-cluster nucleus in (N=Z=2n) 4n nuclei and precursor to α-linear chain states (Ikeda)
- > Energy and decay width indicative of structure (α - α) determined by **strong** interaction
- Electromagnetic observables provide stringent test of structure: e-scattering (×), γ -ray transitions ($\sqrt{}$)

Partial level scheme of ⁸Be

α - α (real) phase shifts from elastic scattering

Capture cross-sections from initial $\alpha + \alpha$ partial waves

K. Langanke, C.Rolfs, Z.Phys. A324, 307 (1986)
K. Langanke, C.Rolfs, Phys. Rev. C 33, 790 (1986)

Ab initio calculations by Argonne group 2-body potential: v_{18} , 3-body potential: Urbana IX

Wiringa, Pieper, Carlson, Pandharipande, Phys. Rev. C 62, 14001 (2000)

2. EM transition from 4⁺-to-2⁺ in ⁸Be

- αα
- EM decay of 4⁺ to 2⁺ resonance in ⁸Be observed for
 first time (~35% precision)
 PRL 94, 122502 (2005)
- > α -cluster model and *ab initio* calculations of B(E2) differ by ~20% . An accurate measurement needed!

Schematic of method

 α -beam on ⁴He gas target

Measure γ -ray transition and alphas from 2⁺ decay.

 $\theta_{\alpha\alpha}$ smaller than about 60° compared to $\theta_{\alpha\alpha}$ (elastic) = 90°

Pelletron LINAC Facility @ TIFR, Mumbai

14 MV Tandem (1988), SC Linac booster (2002/2007: 3/7 modules)

First measurement reported in 2005

28

2D spectra On, Off resonance

E_{sum} spectra On, Off resonance

Cluster model QMC Expt σ_{γ} (22.4 MeV) 165 ± 54 134 nb σ_{γ} (26.5 MeV) 39 ± 26 12 nb Γ_{ν} (eV) 0.53 ± 0.17 0.45 $B(E2) e^2 fm^4$ 18.2 ± 0.4 (Wiringa 2000) 21.9 25 ± 8 26.0 ± 0.6 (Wiringa, p.c. 2004

V.M. Datar, Suresh Kumar, D.R. Chakrabarty, V. Nanal, E.T. Mirgule, A. Mitra and H.H. Oza, Phys.Rev.Lett. **94**, 122502 (2005)

A first observation but *large errors* (33% on resonance)

Details of improved experiment

- Expt at Pelletron Linac Facility, TIFR, Mumbai
- ➢ ⁴He beams at 4 energies across 4⁺ resonance
- > ⁴He gas target (isolated by 1 mg/cm² Kapton)
- \succ α-particles detected in annular Si strip detector (16 θ
- L/R, 16 ϕ) 500 μm thick, 48 mm ID, 96 mm OD
- $\succ \gamma$ -rays in 2×19 hex. Bismuth Germanate (BGO) dets.
- Heavymet shield around Kapton windows
- \blacktriangleright Limiting aperture of 24 mm dia to shield scattered beam

Schematic of experimental setup

Detectors: BGO array (γ), Si-strip detector (α_1, α_2)

16 φ sectors

 $2 \times 16 \theta$ rings (2L + 2R)quadrants

Gas target chamber with SiSD and heavymet shield

3. Results

Some spectra... α calibration spectra in DSSD

Prompt time spectra between DSSD and BGO

Gated 2D spectrum at E_{beam} = 22.4 MeV

$E_{\alpha 1}+E_{\alpha 2}+E_{\gamma}$ sum energy plots at 4 beam energies

Monte Carlo simulation & data reduction

- Monte Carlo simulation of setup including
- □ extended gas target, aperture
- \square energy loss of beam and decay αs
- \Box angular distribution of 4⁺ to 2⁺ γ -rays, decay α s
- \Box γ -ray response in BGO array (GEANT 3.1)
- Identical gates on simulated and actual data for arriving at radiative capture cross sections at 4 beam energies

Effective target zone at 3 beam energies

Radiative capture cross section at four α -energies

Greens Function Monte Carlo calculations

Pastore (USC), Wiringa (ANL)
NN:Argonne v₁₈ potential
3N: Illinois 7 potential
VMC trial w.f. → GFMC in
imaginary time

Mean values at τ =0.1 MeV

Error: MC + variation from values

between $\tau = (0.08 - 0.12) \text{ MeV}^{-1}$

B(E2; 4⁺ \rightarrow 2⁺) e²fm⁴

- Cluster model21.6Ab initio (GFMC) 27.2 ± 1.5 Expt. * 21.0 ± 2.3
- *Assuming Breit Wigner $E_R = 10.9 \text{ MeV}, \Gamma=3.5 \text{ MeV},$ $E(2^+) = 3.04 \text{ MeV}, \text{ extracted } \Gamma_{\gamma} = 0.48 \pm 0.05 \text{ eV}.$ However for $2^+ \rightarrow 0^+$ cluster model gives large B(E2) of 40 e²fm⁴ compared to *ab initio*'s 20.0 ± 0.8 e²fm⁴

V. M. Datar et al, Phys. Rev. Lett . 111, 062502 (2013)

R matrix analysis of $\alpha(\alpha, \gamma)$ ⁸Be capture cross section

R matrix code AZURE2: R. Azuma et al. Phys. Rev. C 81, 045805 (2010)

Simultaneous R matrix Fits to $\alpha + \alpha$ elastic scattering data

Resonance parameters from R matrix fits

E _x (MeV)	Jπ	Γ _{particle} (MeV)	Γ _{γ0} (eV)	Γ _{γ2} (eV)	
0.00	0+	5.57 eV			
3.02	2+	1.68	0.009		$\Rightarrow B(E2) \approx 28.4 \pm 3.1 \text{ e}^2 \text{fm}^4$ Agrees with <i>ab initio</i> calculations giving 27.2 \pm 1.5 \text{ e}^2 \text{fm}^4
11.4	4+	4.02		0.68	
18	0+	6.5		4.83	
18	2+	6.51		1.73	
18	4+	6.6		23.03	

Suprita Chakraborty, et al., DAE-BRNS Symp. On Nucl. Phys. (2018)

4. Summary and future possibilities

> Results of more accurate measurement of 4⁺-to-2⁺ γ decay in dumbbell shaped nucleus ⁸Be

A better theory combining *ab initio* structure
calculations with reaction models needed (as in *n*-⁴He)

> A measurement of more challenging 2⁺ to 0⁺ radiative transition in ⁸Be needed (~ 4 or 2 × 10⁻⁹) Cluster model vs *ab initio* B(E2): 40 vs (20 ± 0.8) e²fm⁴

 \blacktriangleright Possible reactions for 2⁺ to 0⁺ EM transition: ⁴He+⁴He (gas jet tgt) $\rightarrow 2\alpha + \gamma$ (E_{α} = 3 - 9 MeV) cleaner! or ¹¹B(p,α_1) to populate 2⁺ at $E_R = 163$ keV IS on 200 kV deck Need highly segmented fast detectors, diamond array/overbiased Si strip detectors for α s, LaBr₃(Ce)/INGA (24 HPGe clover detectors) for γ -ray

Gas Target: $\theta_{\alpha\alpha} \approx 20^{\circ}$ (on resonance)

Background: Random coinc. 2 or 3 α - γ (tail of 4.44 MeV)

Intra-state E2 transition (diagonal E2 moment)?

 $E_x(4^+) + \Gamma/2 \rightarrow E_x(4^+) - \Gamma/2$

Expected branching ratio $\sim 10^{-2} \times 10^{-7} = 10^{-9}$

While the same setup as in the measurement of the 4⁺ to 2⁺ EM branch could be used, a gas jet target could be a cleaner option.

- ➤ As far as I know no observation of an intra-resonance EM transition in atomic or hadronic system. For example, Δ-resonance (E_R≈1232 MeV, Γ≈117 MeV) decay to N seen with $\Gamma_{\gamma}/\Gamma \sim 6 \times 10^{-3}$. Intra-resonance branch could be ~ 4×10⁻⁴.
- Possibilities for EM decay of unbound states in ⁵Li/⁶Be?

Schematic of gas jet target

The number of He gas at 10 mm distance from the nozzle expected to be ~ 10^{17} /cm³ assuming a 1 mm beam diameter

B. Dey (Bankura Univ.), D. Pandit (VECC), P.Y. Nabhiraj (VECC), Subinit Roy (SINP)

Prototype Gas Jet Target Components Fabricated @

Workshop, VECC Kolkata

Nozzle-skimmer arrangement inside the chamber

Acknowledgement

D.R. Chakrabarty, Suresh Kumar, S.P. Behera, A. Chatterjee, E.T. Mirgule, A. Mitra, K. Ramachandran, P.C. Rout, A. Shrivastava (BARC), V. Nanal, R.G. Pillay (TIFR), P. Sugathan (IUAC), S. Pastore, R.B. Wiringa, C.J. Lister (ANL,US) D. Jenkins, O. Roberts (York, UK); Subinit Roy, Suprita Chakraborty (SINP)

Special thanks to staff of Pelletron Linac Facility.

Thank you!

Lesser flamingoes @ mangroves near BARC, Mumbai

Green woodpecker @Corbett National Park