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Figure 1.2: Chart of the nuclides (ca. 2005). The black squares denote the nuclei found in nature. The present
extent of nuclei, for which at least one characteristic has been measured, are enclosed by the “stepped” border.
The line marked Bn = 0 approximates the neutron drip line. The line marked Bp = 0 approximates the
proton drip line. Outside of these borders, neutrons and protons are lost so rapidly from nuclei that the
nuclei cannot be observed. The line marked Z2/A = 46 indicates an approximate limit to nuclear stability
with respect to spontaneous fission. The magic numbers 2, 8, 20, 28, 50, 82, and 126 (cf. Section 1.3) also
are indicated.

before they were observed. There have been many experimental surprises. In this
respect, nuclear physics is in “good company” with condensed matter physics. There
are a number of parallels. For example, many nuclei and condensed matter systems
exhibit superfluidity. In fact, it is sensible to regard nuclei as examples of condensed
matter.

The future of nuclear physics, as also of condensed matter physics, depends in
part on producing new condensates. For nuclei this means new combinations of N
and Z. A consideration of Figure 1.2 reveals that we have studied only about 30%
of the possibilities. To study the remaining 70% of the possibilities, which are very
unstable, is one of the future challenges of nuclear physics.
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Figure 1.1: The known atomic nuclei are presented in a standard manner, termed the Chart
of the Nuclides where “nuclide” means nucleus plus full complement of atomic electrons.
The term “isotopes” is used to refer to the entries in the chart and also to refer to a sequence
of constant Z. Sequences of constant N are referred to as “isotones”. The black squares
denote the isotopes found in Nature. The horizontal and vertical lines are historically called
the “magic numbers”: they correspond to energy shell gaps observed in spherical nuclei at
the nucleon numbers — 2, 8, 20, 28, 50, 82, and (for neutrons) 126. The lines marked
Bp ⇡ 0, Bn ⇡ 0 are the so-called proton and neutron “drip” lines: outside of these borders,
it is estimated that nucleons will be lost so rapidly that the species cannot be isolated for
study. The line marked Z2/A = 46 is an estimate of the limit of nuclei that can be isolated
for study with respect to limits due to rapid spontaneous fission. The stepped border is the
current (ca. 2019) limit for which at least one characteristic of an individual isotope has been
characterized.

sess a sharp surface — it exhibits a diffuseness as deduced from inferred charge density
distributions determined by elastic electron scattering 1:
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This is illustrated in figures 1.2 and 1.3. Nuclear surface diffuseness shows systematic trends
but is not a fixed geometric property of nuclei. In consequence it is convenient to define
a root-mean-square charge radius (hr2i 1

2 ) for a given nuclear species, i.e. a given proton
number (Z) and neutron number (N). This is well-defined and is unique for a given (Z,N).
Such data are usually shown for fixed Z as a function of N and, further, what is plotted is the
difference between hr2i with reference to a specified N value; they are called isotope shifts.

1Note that such models of nuclear charge distributions are also explored using muonic atom X-ray spec-

We	are	studying	a	many-body	problem:	
	
we	must	systematically	acquire	data	as	
		a	function	of	A,	Z,	and	N;	
	
we	possess	access	to	the	many-body	
	“parameters”	at	the	level	of	precise	
	selection	of	A	(mass	separation)	and	
Z	(charge	selectivity)	and,	therefore	N;	
	
we	possess	a	large	selection	of		
spectroscopic	techniques	(multi-faceted	
“eyes”).	

The	nucleus	is	a	fundamental	level	of	organization	of	matter.	
	
The	nucleus	is	a	unique	manifestation	of	many-body	quantum	mechanics.	

Jenkinswood,	Fig.	1.1		
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1 Elements of nuclear structure

Figure 1.4: A plot of binding energy per nu-
cleon, B/A, versus mass number A. The
quantities B/A are experimental. Over the
mass range 20 � A � 200, the average value
of B/A is � 8.3 MeV/nucleon (the horizontal
dashed line). The most tightly bound nucleus
is 62Ni which has a binding energy of 8.795
MeV/nucleon. The solid curve is a smooth
line through the data. The data points, for
the nuclei shown, are chosen arbitrarily. (The
data are from Audi G., Wapstra A.H. and
Thibault C. (2003), Nucl. Phys. A729, 337.)
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force between particles in a many-body system only acts between near neighbours.
Thus, for a large nucleus, the binding energy per nucleon is independent of nuclear
volume. However, for finite nuclei, there are surface e�ects; nucleons at the surface
do not have a full contingent of neighbours. This is reflected in the decrease of
B/A for light nuclei which have a larger fraction of their nucleons at the surface.
In contrast, a long-range force between nucleons would result in a non-constant
value of B/A. The Coulomb repulsion between protons in nuclei is of this type.
It causes the decrease of B/A for heavy nuclei and ultimately limits the stability
of very heavy nuclei. The practical consequence of this is spontaneous fission, as
would occur for a droplet of water if an increasing electrostatic charge were applied.
The Z2/A = 46 line, beyond which spontaneous fission half-lives are estimated to
be less than 1 µs, is shown in Figure 1.2. Another consequence of the Coulomb
force in nuclei is the curvature of the stability line, evident in Figure 1.2, towards
neutron excess in heavy nuclei.

Nuclear charge distributions are probed, for example, in electron scattering ex-
periments. Nuclear mass radii are less easily measured. However, it is generally
assumed that, with the exception of a few neutron-rich nuclei such as 11

3 Li, the
nuclear mass and charge distributions are proportional to one another.

Root-mean-square charge radii are shown as a function of A1/3, for selected
nuclei, in Figure 1.5. For heavy nuclei, the data approximate the straight line with

⇥
5
3 hr2iexpt

⇤ 1
2 ⇡ 1.1 A1/3 + 0.65 fm. (1.1)

The factor 5
3 is included in this expression because, for constant-density matter with

a sharply-defined surface of radius r = R0 A1/3 (cf. Figure 1.6), the mean-square
radius would be given by

hr2i = 3
5R2

0A
2/3. (1.2)

6

Figure 1.6: Binding energy per nucleon. The detailed features are discussed in the text. The
solid curve is a smooth line through the data. The data points are chosen arbitrarily. The data
are taken from AMDC files (see chapter 2, section 2.3).

The liquid-drop-like behavior of nuclei is also reflected in hr2i 1
2 values when plotted as

a function of A, viz. 
5
3
hr2i

� 1
2
= R0A

1
3 . (1.3)

Figure 1.7 shows such a plot and one observes that the volume of a nucleus scales as
A, the number of nucleons. If the nuclear force were long ranged and attractive, nuclear
volumes would “shrink” relative to the number of particles. This occurs for atoms [as shown
in figure 1.8] and reflects the dominance of the long-ranged attraction of the +Ze charge of
the nucleus over the electrons as Z increases; there are secondary electron-electron repulsive
forces, but these are less important due to the diffuse distribution of the electrons within the
atom. Figure 1.8 also shows the manifestation of atomic shell structure in atomic radii.
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FIG. 2. The predicted surface-energy (a) -cohesive-
energy (AE) relation from Eq. (2) is plotted as the solid
line. Experimental results for various materials are plot-
ted. The electron-hole-liquid values are obtained from
Refs. 9 and 10, the nuclear values from Ref. 7, and the
bulk metal values from Ref. 4.

of the nucleon-nucleon potential.
For metals the scaled form of the binding-

energy-separation relation can be connected to
both surface energy 0- and the bulk cohesive energy
AE. This leads to the relation

4mr p cr = 0.823E. (2)
The equilibrium (Wigner-Seitz) radius of a sphere
containing one atom in the bulk solid is denoted by
r p. Given the result in Fig. 1 it is of interest to see
if Eq. (2) also holds for nuclear matter. We take
parameters for nuclear matter from the mass formu-
la.7 The relevant terms are

= (16+4mR2o/A +. . .) MeV

=(16+182 ' +. . .) MeV.

Here R is the radius of the nucleus if we assume a
constant value of the density corresponding to the
saturation limit for nuclear matter and 3 is the mass
number. The radius of a sphere containing one nu-
cleon, rp, is also taken from the saturation limit and
is given explicitly below.

Figure 2 shows a plot of 4rrrp v vs AEfor (1) nu-
clear matter, (2) several representative metals, and
(3) the electron-hole-liquid in Si and Ge. The

FIG. 1. Comparison of a scaled two-nucleon potential,
referred to as v&4 in the text (Ref. 5) with scaled
binding-energy relations for the molecule H2+, the bulk
metal Mo, and the bimetallic interface Al-Zn. The scal-
ing is described in the text.

AE
d E/dr i,,

=0.30 fm. (3)

What can one predict from this conjecture for

agreement with Eq. (2) over 9 orders of magnitude
in energy (and —21 orders of magnitude in densi-
ty, i.e., 10'7 vs 103s particles/cm3) is striking. Sur-
face energies for the electron-hole liquid were taken
from the theoretical calculations of Shore and co-
workers. ' Their values are in good agreement
with experiment for Ge,"and consistent with scat-
tered experimental results for Si.' " A relation
similar to Eq. (2) describes the curvature energy,E„ofnuclear matter and the electron-hole liquid.
The curvature energy is functionally of the form
E, —0.76' ' . The constant was found by fitting
to the electron-hole liquid results of Ref. 11. The
scaled relation predicts that E, —12 MeV A ' for
nuclear matter, in good agreement with the many-
body calculations of Negele and Vautherin.

We therefore conjecture that the binding eriergy
per nucleon in nuclear matter can be represented by
Eq. (1). Then the entire equation of state at zero
temperature in the absence of phase transitions can
be predicted given the equilibrium values of the
binding energy, 4E, the compressibility, E, and the
Wigner-Seitz radius (internucleon separation), r p.
We choose AE =16 MeVlnucleon, E =220+10
MeV, and rp=1.12 fm. Here E=rpd E/dr ~,,
The length scale I for nuclear matter is defined (see
Ref. 4) by

345

Nuclei:	
	binding	energy	per	nucleon	is	independent	of	
	the	size	of	the	system;	much	as	water	boils	
(becomes	unbound)	at	the	same	temperature	
(energy)	for	all	bulk	amounts.		

Classes	of	bound	systems	exhibiting	the	same	scaled		
potential	energy	vs.	distance	curves—	
over	21	orders	of	magnitude	in	density—	
J.H.	Rose	et	al.,	Phys.	Rev.	lett.	53	(1984)	344.		

Jenkinswood,	Fig.	1.6		



Differential	binding	energies:		
(separation	energies,	Sn,	S2n)	reveal	quantum	structure	
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1 Elements of nuclear structure

can claim to have explained the phenomena in terms of interacting neutrons and
protons. This is a primary objective of nuclear physics research.

1.3.1 Di�erences in binding energies and radii

Important indicators of nuclear shell structure come from binding-energy di�er-
ences. Binding-energy di�erences between neighbouring nuclei are called separation
energies. One-neutron separation energies are defined by the expression

Sn(A, Z) = B(A, Z) � B(A � 1, Z), (1.4)

where B(A, Z) is the binding energy of the nucleus with A nucleons and Z protons.
Two-neutron separation energies are defined by

S2n(A, Z) = B(A, Z) � B(A � 2, Z). (1.5)

Proton separation energies are defined in a similar way.
Figure 1.8 shows the one-neutron separation energies for the calcium isotopes.

This figure has two striking features. The first is the saw-tooth nature of the plot.

Figure 1.8: One-neutron separation ener-
gies, Sn, for the calcium isotopes. Note
the odd-even staggering between neigh-
bouring nuclei and the strong disconti-
nuities that occur between A = 40 and
41 and between A = 48 and 49 (cf. Fig-
ure 1.9). (The data are from Audi G.,
Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)
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The second is the discontinuities that occur between A = 40 and 41 and between
A = 48 and 49. The saw-tooth behaviour shows that it requires more energy to
remove a neutron when the neutron number is initially even than when it is odd.
This odd-even staggering e�ect is a manifestation of the predisposition of nucleons
to form strongly-coupled pairs (cf. comments below and in Section 1.4). Thus, to
remove a nucleon from an even nucleus, one has first to break apart the pair to
which it belongs and this demands additional energy. The discontinuities at A ⇡ 40
and 48 are indicators of nuclear shell closures. They show up even more clearly in
two-neutron separation energies.

Figure 1.9 shows the two-neutron separation energies for the (Z = 20) calcium
isotopes. The odd-even staggering is now smoothed out but the discontinuities at
A = 40 (N = 20) and 48 (N = 28) remain. One sees that it requires significantly

10

Figure 1.10: Nuclear one-neutron separation energies, Sn. The data are taken from AMDC
files (see chapter 2, section 2.3).

3. The trend between shells has a shallow slope because the size of the confining potential
changes as ⇠ A

1
3 (cf. equation 1.3). Thus, with increasing A, the width of the potential

increases and the potential is less deep.

4. A global view of neutron shell closures is provided by S2n, as shown in figure 1.13.

Staggering	in	Sn	reveals	pairing		
“correlations”	in	nuclei.	
	
Steps	in	S2n	reveal	energy	(shell)	
	gaps.	
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Figure 1.9: Two-neutron separation ener-
gies, S2n, for the calcium isotopes. The
odd-even staggering is smoothed away,
leaving a clear indication of discontinuities
at A = 41 and 49. (The data are from Audi
G., Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)

more energy to remove a pair of neutrons when N  20 than when N � 22.4 Thus,
we say that the discontinuities occur at N = 20 and N = 28. Such discontinuities
are observed both for protons and neutrons at N, Z = 2, 8, 20, 28, 50, and 82, and
at N = 126. Examples of these discontinuities for 18  N  156 are shown in
Figure 1.10.

Di�erences in radii between neighbouring isotopes also change dramatically at
N = 2, 8, 20, 28, 50, 82, and 126. This is shown for 24  N  144 in Figure 1.11.
One sees that the di�erences in radii increase from values close to local minima to
values close to local maxima at the specified values of N . The numbers 2, 8, 20,
28, 50, 82 and 126 are called magic numbers. The occurrence of magic numbers
suggests a shell structure in nuclei similar to that seen in atoms.

Atoms exhibit changes in binding energies (ionization potentials) and radii (co-
valent and ionic radii) due to changes in electronic shell filling. When atomic shell
filling in atoms passes through the numbers 2, 10, 18, 36, 54, or 86, there are sud-
den decreases in ionization potentials and sudden increases in covalent and ionic
radii. These changes reflect the exclusion of electrons from the “smaller” more
strongly-bound configurations that are filled first in atoms. The implication of the
data shown in Figures 1.10 and 1.11 is that nuclei also possess shell structure. In
atoms, energy shells reflect the dominance of the independent-particle component
of the Hamiltonian. A suggestion that the nuclear Hamiltonian contains a domi-
nant independent-particle component, also comes from the observation that magic
numbers have the same values for protons and neutrons, regardless of mass number,
i.e., magic numbers for protons do not depend on the number of neutrons and vice
versa. It is also suggested by the observation of single-particle states in the near
neighbours of doubly closed-shell nuclei. These are states which, to a first approxi-
mation, are simple (uncorrelated) products of core states and single-particle states.

4The separation energy of a pair at N = 21 is approximately the average of the N = 20 and
N = 22 values. This corresponds to the fact that the first neutron is removed from the N = 21
nucleus and the second from the N = 20 nucleus; the calcium isotopes have Z = 20.

11

Figure 1.11: Nuclear two-neutron separation energies, S2n. The data are taken from AMDC
files (see chapter 2, section 2.3).

FIG. 1.12. 

��

���� ��

��

�

� ��
��

� ��� � � �

�

En
er

gy

Figure 1.12: A schematic view of level filling and nucleon (pair) removal in a nucleus. There
are separate sets of levels for protons and neutrons. The arrows depict removal of successive
pairs from the nucleus, cf. figure 1.11 (note, this occurs from right to left).
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Figure 1.9: Two-neutron separation ener-
gies, S2n, for the calcium isotopes. The
odd-even staggering is smoothed away,
leaving a clear indication of discontinuities
at A = 41 and 49. (The data are from Audi
G., Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)
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we say that the discontinuities occur at N = 20 and N = 28. Such discontinuities
are observed both for protons and neutrons at N, Z = 2, 8, 20, 28, 50, and 82, and
at N = 126. Examples of these discontinuities for 18  N  156 are shown in
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One sees that the di�erences in radii increase from values close to local minima to
values close to local maxima at the specified values of N . The numbers 2, 8, 20,
28, 50, 82 and 126 are called magic numbers. The occurrence of magic numbers
suggests a shell structure in nuclei similar to that seen in atoms.
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valent and ionic radii) due to changes in electronic shell filling. When atomic shell
filling in atoms passes through the numbers 2, 10, 18, 36, 54, or 86, there are sud-
den decreases in ionization potentials and sudden increases in covalent and ionic
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strongly-bound configurations that are filled first in atoms. The implication of the
data shown in Figures 1.10 and 1.11 is that nuclei also possess shell structure. In
atoms, energy shells reflect the dominance of the independent-particle component
of the Hamiltonian. A suggestion that the nuclear Hamiltonian contains a domi-
nant independent-particle component, also comes from the observation that magic
numbers have the same values for protons and neutrons, regardless of mass number,
i.e., magic numbers for protons do not depend on the number of neutrons and vice
versa. It is also suggested by the observation of single-particle states in the near
neighbours of doubly closed-shell nuclei. These are states which, to a first approxi-
mation, are simple (uncorrelated) products of core states and single-particle states.

4The separation energy of a pair at N = 21 is approximately the average of the N = 20 and
N = 22 values. This corresponds to the fact that the first neutron is removed from the N = 21
nucleus and the second from the N = 20 nucleus; the calcium isotopes have Z = 20.

11

Figure 1.11: Nuclear two-neutron separation energies, S2n. The data are taken from AMDC
files (see chapter 2, section 2.3).
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Figure 1.12: A schematic view of level filling and nucleon (pair) removal in a nucleus. There
are separate sets of levels for protons and neutrons. The arrows depict removal of successive
pairs from the nucleus, cf. figure 1.11 (note, this occurs from right to left).
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Jenkinswood,	Fig.	1.12	

Jenkinswood,	Fig.	1.10		
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Bond	lengths	and		isotope	shifts,	δ<r2>		reveal	quantum	
structure	(energy	shells)	in	atoms	and	nuclei	

12 CHAPTER 1. GROSS PROPERTIES OF NUCLEI

Differences in gross properties of nuclei reveal underlying structure. Figure 1.9 shows
the manifestation of nuclear shell structure in differences for nuclear radii. Figure 1.10 shows
differences in nuclear binding energies expressed as separation energies, e.g., one-neutron
separation energies, Sn

Sn = M(A,Z,N)�M(A�1,Z,N �1)+mn (1.4)

Three features should be noted in Figure 1.10:

1. There is an odd-even “staggering” of Sn.

2. There are discontinuities in the form of “steps” down with increasing N or A.

3. The trend between the steps is smooth and down sloping with increasing neutron num-
ber.
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Figure 1.11: Di�erences in mean-square charge radii for isotopes di�ering in N by 2. Data are for selected
isotopes and even N . Solid and open circles are used only to help distinguish isotopic sequences. Discon-
tinuities are clearly evident at N = 28, 50, 82, and 126. The very large (o�-scale) shifts for Rb and Sr at
N = 60 are due to a sudden onset of deformation (see Figure 1.41). (The data are from: Otten E.W. (1989),
in Treatise on Heavy-Ion Science, Nuclei Far from Stability, Vol. 8, edited by D.A. Bromley (Plenum Press,
New York), p. 517; Nadjakov E.G., Marinova K.P. and Gangrsky Y.P. (1994), At. Data Nucl. Data Tables
56, 133; Shera E.B. et al. (1976), Phys. Rev. C14, 731 – Fe, Ni, Zn; Mårtensson-Pendrill A.-M. et al. (1992),
Phys. Rev. A45, 4675 – Ca; Wendt K. et al. (1988), Z. Phys. A329, 407 – Ba; and Alkhazov G.D. et al.
(1988), Nucl. Phys. A477, 37 – Tm.)

states are, in general, fractionally occupied. Thus, to the extent that a single-
nucleon state is occupied, it can give up a nucleon in a pickup reaction leaving
behind a residual nucleus in a hole state. Conversely, to the extent that a single-
nucleon state is empty, it can accept a nucleon in a stripping reaction thereby
creating a residual nucleus in a particle state.

Transfer reactions are simplest to interpret when either the initial or the final
state of the target nucleus has spin (i.e., total angular momentum) zero and when
the conditions are such that the transition from the initial to the final state oc-
curs, to a good approximation, in a single step. This happens when the interaction
between the projectile and target nucleus is weak and can be treated in first or-
der perturbation theory, i.e., in the Born approximation. One then describes the
reaction as a direct reaction.

When either the state of the target nucleus or the state of the final nucleus
has spin zero, the spin and parity of the transferred nucleon in a direct single-
nucleon transfer reaction is simply the di�erence in the spin and parity of the initial
and final nuclear states. Moreover, the orbital component of the total angular

13

Figure 1.9: Isotope shifts for selected isotopic sequences of nuclei. The data are taken from
[8].

The following interpretations can be made:

1. The odd-even staggering is due to enhanced binding when the neutron number is even.
(A similar effect is observed for Sp.) This effect is termed “pairing”. This is a profound
manifestation of quantum mechanical correlations. Details will be addressed in later
chapters.

2. The steps are due to so-called “shell” closures. The effect is clearer when S2n is plotted,
as shown in figure 1.11. Proceeding from right to left in the figure, successive neutrons
(neutron pairs) are being removed. Nucleons in the nucleus are confined in an average
potential generated by all of the other nucleons. There is an energy ordering and a
sequential filling of orbitals with well-defined occupancies of orbitals which possess
degeneracies. This is shown schematically in figure 1.12. When an energy gap is
reached in the removal process, there is a sudden step up in the removal energy. This
is because removal is progressively from deeper-lying orbitals in the potential and so
more energy must be supplied to effect removal.

Sudden	increases	in	δ<r2>	
match	shell	gaps	from	S2n.			

Sudden	increases	in	chemical	bond	lengths		
match	shell	gaps	in	atoms	(1Å	=	0.1nm).	

Nucleons	in	nuclei	and	electrons	in	atoms	
can	behave	as	independent	particles.	
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Figure 1.8: Atomic radii expressed as covalent bond radii. Note the contraction that occurs
successively through each sequence Li-F, Na-Cl, etc. This reflects the long-ranged nature
of the Coulomb attraction of the nucleus as the atomic number increases. Other features
are due to electron-electron repulsion and electronic subshell structure. Note, the use of the
Ångstrom = 0.1 nm.
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Jenkinswood,	Fig.	1.8		
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QUADRUPOLE	MOMENTS	OF	NUCLEAR	GROUND	STATES:	
nuclei	are	(usually)	spherical	at	closed	shells,		

but	always	have	large	deformations	far	from	closed	shells	(all	prolate)			

16 CHAPTER 1. GROSS PROPERTIES OF NUCLEI

The shell structure of nuclei was the first key step towards organizing nuclear data using
quantum mechanics and was formalized in 1949 in two papers, one by Maria Goeppert-
Mayer [9] and one by Otto Haxel, J. Hans D. Jensen, and Hans E. Suess [10]. For this insight,
Goeppert-Mayer and Jensen shared the 1963 Physics Nobel Prize (with Eugene Wigner).
The shell structure of nuclei led to the nuclear shell model, details of which are given in later
chapters.

One might suppose that nuclei, in their apparent conformity to liquid drop-like behaviour,
are always spherical. A spherical shape would minimize the surface area and so maximize
the binding energy by maximizing the saturation of the short-ranged nucleon-nucleon force.
However, most nuclei are deformed. The evidence for this comes from quadrupole mo-
ment measurements. Quadrupole moments of selected nuclei are shown in figure 1.14. This
aspect of nuclear behavior will dominate much of this book. It is another profound man-
ifestation of quantum mechanical correlations. Details will be addressed later. However,
it can be noted that the first evidence for nuclear deformation came from optical hyperfine
spectroscopy conducted by Hermann Schüler and Theodore Schmidt [11], as interpreted by
Hendrik Casimir [12]. The saga of nuclear deformation is detailed by Heyde and Wood [13]
(and further details of the early history are given by Lieb [14]).

February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

1 Elements of nuclear structure

1268250402820168

21 41 61 81 101 121 141

–5

  0

  5

10

15

Z  or  N

(Q
  Z

R
2 )

  x
  1

02

Figure 1.44: Ground-state electric quadrupole moments of odd-mass nuclei. The values given are scaled by
ZR2, i.e., by the charge and squared radius of the nucleus. Solid circles are for odd-Z nuclei and open circles
are for odd-N nuclei. The solid line is to guide the eye. (The data are taken from Raghavan P. (1989), At.
Data Nucl. Data Tables 42, 189 and Stone N.J. (2005), At. Data Nucl. Data Tables 90, 75.)

In the rotor model (Section 1.7.2), deformed nuclei (both even and odd) are most
commonly described as prolate spheroidal (axially symmetric, cigar shaped) objects
with only rotational degrees of freedom. The component of the angular momentum
of the nucleus relative to the symmetry axis of the rotor is a good quantum number
in this model and takes a constant value (K) for all states of a rotational band.
Then, because the angular momentum, J , of the nucleus cannot be less than its
projection on any axis, it cannot be less than K. Moreover, the lowest energy state
of a simple rotor has the smallest value of J possible. Thus, for a simple rotor, K
is equal to the angular momentum of its ground state.

The quadrupole moment of a state of angular momentum J is defined to be the
quadrupole moment of this state when its angular momentum is maximally aligned
with the space-fixed z axis, i.e., when M = J . Then, as illustrated in Figure 1.45(a),
if the state with angular momentum J is the ground state of an axially symmetric
rotor, the projection of the angular momentum J (a vector) onto the symmetry
axis of the rotor is also K = J . Thus, the symmetry axis of the rotor will be

46

Figure 1.14: Electric quadrupole moments indicate that many nuclei are non-spherical, both
for odd Z and odd N. The symbol code is odd-Z (solid), odd-N (open). Note that positive
values (prolate shapes = rugby football-like) dominate over negative values (oblate shapes =
doorknob-like): there is not a consensus view on why this occurs. The closed shell nucleon
numbers are distinguished by values that are consistent with zero. The normalization, by
ZR2 is to accommodate the dimensions of the quantity being plotted so that the underlying
nuclear deformation can be compared. The data are taken from [15].

There are limits to the existence of nuclei with respect to the possible combinations of
Z and N that survive long enough to be isolated for study in the laboratory. An example of
these limits is illustrated in figure 1.15. Thus, we speak of proton and neutron “drip lines”

Jenkinswood,	Fig.	1.14		

deformation		
					zero	

Q	>	0	prolate	

Q	<	0	oblate	



EVEN-EVEN	NUCLEI:	
most	have	first	excited	states	with	spin-parity	2+,	

with	high	energies	at	closed	shells,	low	energies	far	from	closed	shells			
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Figure 2.7: Map of E(2+
1 ) values in keV for nuclei bounded by Z � 50 and N  82. The

high “ridges” for Z = 50 (tin) isotopes and N = 82 isotones are characteristic of nuclei with
closed shells. Note that the double-closed shell nucleus 132Sn has a value of 4041 keV, which
is not shown as it is off the scale used. This is a “southeastwards view” of the Chart of the
Nuclides

Jenkinswood,	Fig.	2.7		



PART	II.	

DEFORMED	NUCLEI	AND	ROTATIONS	



Even-even	nuclei:	
R4	=	E(41+)/E(21+)	~	3.33	indicates	an	axially	symmetric	rotor	limit		

38 CHAPTER 2. NUCLEAR EXCITATION PATTERNS

Figure 2.9: Map of R4 := E(4+
1 )/E(2+

1 ) values for nuclei in the rare earth region. The close
approach of many of these nuclei to R4 = 3.333 (dashed horizontal line) is interpreted as due
to deformation, as emerges from the simple rotor model of deformed nuclei, discussed in
chapter 3. Solid lines connect isotopic chains and dashed lines connect isotonic chains.

Figure 2.10: Map of R4 values for nuclei in the open-shell region Z � 54, N  74, 118 
A  140. The mid-shell point is located in the unexplored region of 132Dy, cf. figure 2.7. For
other details, see figure 2.9.

Jenkinswood,	Fig.	2.9		



Even-even	nuclei:	
electric	quadrupole	transition	strengths,	B(E2;	21+	à	01+),	

	weak	at	closed	shells	and	strong	far	away	from	closed	shells	
	

42 CHAPTER 2. NUCLEAR EXCITATION PATTERNS

2.1.2 Electromagnetic decay properties
The systematic decay strengths of 2+

1 states, B(E2;2+
1 ! 0+

1 ) for even-even nuclei with
A = 60 ⇠ 140 and 140 ⇠ 250 are shown in figures 2.14 and 2.15, respectively. These decay
strengths are given in so-called Weisskopf units (W.u.), which are explained below. The
correlation between B(E2;2+

1 ! 0+
1 ) and E(2+

1 ) is dramatized in figure 2.16. Note that this
is a log-log plot that runs over two orders of magnitude on each axis.

Figure 2.14: Map of B(E2;2+
1 ! 0+

1 ) for nuclei with Z � 28, N  82. Isotopic sequences
are connected by solid lines.

If one adopts an axially symmetric rotor model then, cf. the expression eq. 2.3 and
chapter 3, the smaller the value of E(2+

1 ) the larger the moment of inertia and, by implication,
the larger the deformation of the nucleus. Qualitatively, this provides a simple consistent
picture.

Electromagnetic strengths in nuclei are quantified using Weisskopf units. These were
introduced by Viktor Weisskopf [3]; he made the following key statements:

“We can estimate these matrix elements by the following exceedingly crude
method. We assume that the radiation is caused by one single proton which
moves independently within the nucleus, ... ”

“The assumptions made in deriving these estimates are extremely crude and
they should be applied to actual transitions with the greatest reservations. They
are based upon an extreme application of the independent-particle model of the
nucleus and it was assumed that a proton is responsible for the transition.”

Jenkinswood,	Fig.	2.14		
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Signature	of	the	rotor	model	in	nuclei	
54 CHAPTER 3. NUCLEAR DEFORMATION AND ROTATIONS
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Figure 1.55: Gamma-ray spectra from the Coulomb excitation of 242,244Pu with a beam of 208Pb ions. The
energy levels of the decay schemes corresponding to the observed E2 transitions are also shown and are good
examples of rotational bands. The absence of gamma-ray peaks corresponding to the transitions 2+ � 0+

and 4+ � 2+ is a consequence of experimental conditions and need not concern us. The irregularities above
spin 20 are discussed in Volume 2. (The data and spectra are taken from Spreng W. et al. (1983), Phys. Rev.
Lett. 51, 1522.)

66

FIG. 3.4.Figure 3.4: Spectrum of an axially symmetric rotor, as manifested in 242,244Pu following
Coulomb excitation. Details are discussed in the text. The figure is reproduced from Rowe
& Wood and is based on one appearing in [4] shown with permission.

Jenkinswood,	Fig.	3.4		

Eγ	=	ΔE	=	A	(2I	+	1)	

EI	=	A	I	(I	+	1)	

Constant	spacing	between	Eγ	
		à	constant	A—”rigid	rotor”.	
	
Observation:	A	decreases	with	
	increasing	spin.				



The	intrinsic	deformation	of	nuclei	is	consistent*	
with	no	change	as	spin	increases		
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R&W Fig. 1.61
FIG. 3.5.Figure 3.5: Electromagnetic transition and diagonal E2 matrix elements reduced to intrinsic

quadrupole moment, Q0 values, cf. eqs. 3.6, 3.8. The shaded bands are the values of Q0
deduced from the matrix element connecting the 2+

1 and 0+
1 states. The figure is reproduced

from Rowe & Wood.

Jenkinswood,	Fig.	3.5		
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There are further subtleties to quantum rotors: if J is small, the energy scale of quan-
tization may be very big, i.e., h̄2/2J may be large. This occurs in atoms and is the reason
that one never discusses collective rotations in atoms. There are other reasons such as atoms
possessing rotational symmetry and so, from their quantum mechanical nature, “rotation”
has no meaning (at the most fundamental level, atoms do not possess a Goldstone mode).
This is the reason that, for the quantum symmetric rotor, rotations about the symmetry axis
are not discussed. Later, rotations about such an axis are introduced in nuclei when this axis
is not rotationally symmetric.

The allowed values of I for ground-state rotational bands of even-even nuclei, which have
J = 0 ground states, are I = 0,2,4,6,8, · · · . The reason for only even-spin values follows
from the symmetry of the eigenstates: one sees from figure 3.1 that the two states |IMKi and
|IM,�Ki are degenerate in energy (there is reflection symmetry). Thus, the correct ground
state is

|IMi =

�
|IMKi+(�1)I+K |IM,�Ki

 
p

2
, (3.5)

where the relative phase factor expresses the reflection symmetry of the angular momentum
states; but for K = 0 this only allows even values of I because |IMKi and |IM,�Ki become
indistinguishable. The energies manifested in ground-state bands of even-even nuclei accu-
rately reflect an even-spin only sequence, albeit the spins are established from experiment,
and they match this. (We remind the reader that, in the mathematical formulation of quantum
mechanical systems, we cannot write equations that imply knowledge that is unattainable.
Often, differences between quantum mechanics and classical mechanics can be essentially
incomprehensible.)

Electromagnetic properties for ground-state bands of even-even nuclei follow from the
axially symmetric rotor model. The “even-spin only” states confine electromagnetic transi-
tions to E2 multipolarity. Matrix elements follow from the Wigner-Eckart theorem5, viz.

hIMK = 0|T (E2)|I �2,MK = 0i = (2I +1)
1
2

✓
5

16p

◆ 1
2
hI020|I �2,0ieQ0, (3.6)

where hI020|I �2,0i is a Clebsch-Gordan coefficient and Q0 embodies the so-called reduced
matrix element for the E2 operator and is a parameter for the model, e is the fundamental
unit of electrical charge.

The resulting B(E2) values for the ground-state band of an even-even nucleus that char-
acterize the quantum symmetric rotor are given by

BI,I�2

B20
=

15I(I �1)

2(2I �1)(2I +1)
, (3.7)

where

BI,I�2 := B(E2; I ! I �2) =
hIMK = 0|T (E2)|I �2,MK = 0i2

2I +1
. (3.8)

5It is important to note the role of the K quantum number here. The K quantum number is peculiar to the
model (it does not have a “microscopic” justification). It plays the key role in the “reduction” of the matrix
element in eq. 3.6 to yield a reduced matrix element, which becomes the constant Q0, the intrinsic quadrupole
moment (a model-defined quantity): this quantity is a characteristic of the rotational band. Many ratios of
measured electromagnetic properties then emerge, which are expressed in terms of just the total spin quantum
number in simple algebraic relations.
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This leads to the values: I(BI,I�2/B20) = 4(1.43),6(1.57), · · · . Figure 3.4 shows that,
within experimental uncertainty, ground-state bands of deformed even-even nuclei are well
described by the axially symmetric rotor model.

Electric quadrupole moments of states in the ground-state band of even-even nuclei like-
wise can be expressed in terms of the parameter Q0. Again, matrix elements follow from the
Wigner-Eckart theorem, viz.

hIMK = 0|T (E2)|IMK = 0i = (2I +1)
1
2

✓
5

16p

◆ 1
2
hI020|I �2,0ieQ0. (3.9)

The resulting Q(I) values for the ground-state band of an even-even nucleus that characterize
the quantum symmetric rotor are given by

Q(I) =


� I

2I +3

�
eQ0. (3.10)

Note that the quadrupole moment of the ground state (I = 0) is zero: this reflects the in-
determinacy of a quantum rotor, i.e. it appears as a spherically symmetric body when the
spin is zero. As the spin increases, Q(I)/Q0 takes the values �2

7 = �0.29, � 4
12 = �0.33,

� 6
15 = �0.40, · · · , and approaches a maximum value of �0.5. Thus, one never observes

the full magnitude of the intrinsic quadrupole deformation. Note further the negative sign,
i.e. a positive Q0 (prolate spheroid in the body frame) appears as an oblate spheroid in the
laboratory frame: for a naı̈ve view of this, consider a rugby football spinning around a fixed
axis. Data for diagonal E2 matrix elements (eq. 3.9) and quadrupole moments (eq. 3.10) are
sparse and are rarely of high precision6. Some values are shown in figure 3.5.

3.2 Odd-mass nuclei, intrinsic excitations, and rotations
Odd-mass nuclei possess an unpaired nucleon. To a first approximation, unpaired nucle-
ons are described by independent-particle degrees of freedom: these degrees of freedom are
described by mean-field models, where the nucleon is confined in a potential that closely
approximates the density distribution of the nucleons in the nucleus. The essential contri-
butions to independent-particle energies in spherical and deformed nuclei are depicted using
diagrams shown in figures 3.6 and 3.7 a, b, c.

6The exception is quadrupole moments deduced from muonic X-ray data.
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There are further subtleties to quantum rotors: if J is small, the energy scale of quan-
tization may be very big, i.e., h̄2/2J may be large. This occurs in atoms and is the reason
that one never discusses collective rotations in atoms. There are other reasons such as atoms
possessing rotational symmetry and so, from their quantum mechanical nature, “rotation”
has no meaning (at the most fundamental level, atoms do not possess a Goldstone mode).
This is the reason that, for the quantum symmetric rotor, rotations about the symmetry axis
are not discussed. Later, rotations about such an axis are introduced in nuclei when this axis
is not rotationally symmetric.

The allowed values of I for ground-state rotational bands of even-even nuclei, which have
J = 0 ground states, are I = 0,2,4,6,8, · · · . The reason for only even-spin values follows
from the symmetry of the eigenstates: one sees from figure 3.1 that the two states |IMKi and
|IM,�Ki are degenerate in energy (there is reflection symmetry). Thus, the correct ground
state is

|IMi =

�
|IMKi+(�1)I+K |IM,�Ki

 
p

2
, (3.5)

where the relative phase factor expresses the reflection symmetry of the angular momentum
states; but for K = 0 this only allows even values of I because |IMKi and |IM,�Ki become
indistinguishable. The energies manifested in ground-state bands of even-even nuclei accu-
rately reflect an even-spin only sequence, albeit the spins are established from experiment,
and they match this. (We remind the reader that, in the mathematical formulation of quantum
mechanical systems, we cannot write equations that imply knowledge that is unattainable.
Often, differences between quantum mechanics and classical mechanics can be essentially
incomprehensible.)

Electromagnetic properties for ground-state bands of even-even nuclei follow from the
axially symmetric rotor model. The “even-spin only” states confine electromagnetic transi-
tions to E2 multipolarity. Matrix elements follow from the Wigner-Eckart theorem5, viz.

hIMK = 0|T (E2)|I �2,MK = 0i = (2I +1)
1
2
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16p
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2
hI020|I �2,0ieQ0, (3.6)

where hI020|I �2,0i is a Clebsch-Gordan coefficient and Q0 embodies the so-called reduced
matrix element for the E2 operator and is a parameter for the model, e is the fundamental
unit of electrical charge.

The resulting B(E2) values for the ground-state band of an even-even nucleus that char-
acterize the quantum symmetric rotor are given by

BI,I�2

B20
=

15I(I �1)

2(2I �1)(2I +1)
, (3.7)

where

BI,I�2 := B(E2; I ! I �2) =
hIMK = 0|T (E2)|I �2,MK = 0i2

2I +1
. (3.8)

5It is important to note the role of the K quantum number here. The K quantum number is peculiar to the
model (it does not have a “microscopic” justification). It plays the key role in the “reduction” of the matrix
element in eq. 3.6 to yield a reduced matrix element, which becomes the constant Q0, the intrinsic quadrupole
moment (a model-defined quantity): this quantity is a characteristic of the rotational band. Many ratios of
measured electromagnetic properties then emerge, which are expressed in terms of just the total spin quantum
number in simple algebraic relations.

*But	we	certainly	need	some	higher	
						precision	B(E2)’s	and	<E2>’s	
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																		BUT	now	we	come	to	the	awkward	part:		
problems	with	(e.g.)	166Yb	and	the	nature	of	the		“crossing”	band		

20	

22	

Jenkinswood,	Fig.	3.24		
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Jenkinswood,	Fig.	3.25b		

Eγ		vs.	Iinitial	plots*	reveal	key	details	of	nuclear	rotation:		
																				yrast	band	transitions	in	166Yb.	

The	plot	suggests	a	contribution	of	
~	8	units	of	spin	from	a	non-rotational,	
i.e.,	“intrinsic”	source:		
	for	example,	a	“broken”	pair	with	spin	8.	
	
A	popular	view	has	been	that	Coriolis	effects		
produce	such	pair	breaking	by	so-called		
“rotation	alignment”	or	“Coriolis	anti-pairing”.	
	
The	further	popular	view	is	that	the	pair	
occupies	Nilsson	configurations	from	the		
highest-j	orbital,	i.e.,	1i13/2.		

*Such	plots	do	not	appear	to	be	used	
				in	any	published	work.		
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OBSERVATIONS:	
	
1).	The	band	crossing	appears	to	be	
						affected	by	the	642	configuration:	
						this	would	be	consistent	with	this	
						configuration	originating	from	the	
						1i13/2	high-j	orbital.	
	
2).	But	this	is	contradicted	by	the		
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						being	zero:	the	unpaired	neutron		
						should	“block”	the	core	alignment.		
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OBSERVATIONS:	
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Figure 3.9: a-d. Plots of g-ray energy vs. spin of the initial state, Ii, for transitions in the
175Lu bands, compared to the neighboring even-even nucleus, 174Yb. The g-ray energies in
keV are given in red and the interpolated energy differences are given in blue. Recognizing
that transition energy is an energy difference for the rotor energy relationship, eq. 3.15, it is
evident that if the odd-mass profiles for such plots are parallel to the profile for the even-even
“core” nucleus, then the term < I · j > has a simple constant contribution to the transition
energy and the term < j2 > does not change with I.
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Large	alignment	case:	
½-	[541]	(j	=	9/2)	Ialign	≈	3.0	
~	150	keV		

Alignment	from	interpolation:	
			~	few	keV	

Most	alignments	are		
small	or	near	zero	
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CRISIS!	
There	would	appear	to	be	no	doubt	that	nuclei	“rotate”.	
	
But	the	simplest	and	long	held	view	by	all	of	us	(older	folks*)	is	that	there	are	
“Coriolis”	effects,	whereby	nucleon	spins	align	with	the	collective	rotation.	
	
To	the	contrary,	odd	nucleons	have	identical	rotational	“profiles”	to	their	
even-even	neighbors;	some	have	nearly	collinear	profiles.	
	
There	is	a	vast	literature	which	now	seems	to	be	in	question.	
	
Essentially:	we	do	not	know	how	nuclei	rotate.	
	
P.S.	I	have	explored	some	ideas—for	the	specialists,	the	so-called	I�j	term--	
but	I	have	only	identified	qualitative	patterns	that	fit	this	term.			

*In	other	words,	it	is	up	to	you	young	folks!	



CONSEQUENCES	(for	the	specialists)	

There	is	no	role	for	pairing	in	any	model	of	nuclear	moments	of	inertia.	
	There	is	no	odd-particle	“blocking”	effect.	
	
There	is	no	such	thing	as	“type-I”	and	“type-II”	moments	of	inertia.	
	One	must	always	use	the	double	differences	with	respect	to	spin,	ΔEγ;		
		single	differences	possess	the	effects	of	alignment—see	next	item.	
	
The	role	of	the	I�j	term	was	never	thoroughly	explored.	
	This	term	contributes	a	constant	to	single	differences	with	respect	to	spin,	Eγ.	
		But	it	is	often	near	zero.			
	
It	would	be	wise	to	reassess	the	cranked	shell	models.	
	The	I�j	term	accounts	for	many,	most,	maybe	all	of	the	effects	attributed		
		to	“cranking”.	One	can	see	similarities	in	the	dynamics	of	a	cranking	term	and	
			the	I�j	term.	The	I�j	term	is	fundamental	to	the	particle-rotor	coupling	model.			
	
		



PART	III.	

SPHERICAL	AND	WEAKLY	DEFORMED	NUCLEI:	
																		IN	SEARCH	OF	PATTERNS	



The	tin	isotopes	(Z	=	50):	
isolated	21+	states	…	and	a	lot	of	complex	spectroscopy	
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Figure 1.29: Low-energy states in the even-mass tin (Z = 50) isotopes. The 0+ ground states and 2+ first
excited states are discussed in the text. (The data are taken from Nuclear Data Sheets and Juutinen S. et al.
(1997), Nucl. Phys. A617, 74 – 106Sn; Górska M. et al. (1998), Phys. Rev. C58, 108 – 104Sn.)

In fact, the ground states of all doubly-even singly-closed shell nuclei have J� =
0+ and a significant energy gap separating them from the first excited state. This is
consistent with the tendency of like nucleons to form J = 0 coupled pairs. Moreover,
it suggests that the pair coupling of like nucleons persists with excitation energy; i.e.,
pairs tend to be broken one at a time and low-energy excitations are predominantly
single-broken-pair configurations.

The second notable feature of Figure 1.29 is that the only excited state of an Sn
isotope below ⇡ 2 MeV is a single 2+ state at a nearly constant energy of about 1
MeV. The near constant energy of the first excited 2+ state is a widespread feature
of singly-closed shell nuclei. The 2+ state can be interpreted as a single broken pair
of neutrons recoupled to J� = 2+. As seen for 210Po (cf. Figure 1.21), a J� = 2+

pair is favoured energetically, although not as much as a J� = 0+ pair.
It is also instructive to interpret the first excited 2+ states in singly-closed shell

nuclei, such as the tin isotopes, as one-phonon quadrupole vibrational states (cf. Sec-
tion 1.7.1). Such states may be compared with the superfluid persistent-flow states
of a quantum fluid and with the persistent-current states of a superconductor. It

nuclear matter was quickly recognised by Bohr A., Mottelson B.R. and Pines D. (1958), Phys.
Rev. 110, 936, following the paper of Bardeen et al., op. cit. Footnote 11 on Page 24.

33

2+

Figure 2.13: Illustration of the basic excitation pattern observed in closed shell nuclei —
example of the Z = 50 (tin) isotopes. Closed shell nuclei are generally characterized by a
significant energy gap, with only one or very few excited states at low energy. However,
starting at or just above the second excited state, a very high level density begins: this leads
to the need to handle spectroscopic complexity. The gap is due to pairing correlations and
this is discussed in detail in chapter 4.

Jenkinswood,	Fig.	2.13		



BUT—Sn	isotopes:	
high-spin	(yrast)	states	in	neutron-rich	nuclei	
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Figure 4.19: Singly closed shell nuclei with Z = 50 (Sn isotopes) for which the low-energy
structure is dominated by a broken pair in the 1h11/2 orbital. Note, in the heaviest Sn isotopes
the 8+ states decay to 7� states: at 1947 keV (130Sn, a 100 % b -decaying isomer) and see
[16] for details of 118�128Sn. Details of the 23/2� state decays in 125,127,129Sn are given in
[17]. Note some multiple copies of J = 4,19/2.

The structures behind the excitation patterns in figures 4.18 and 4.19 are dominated by
nucleons occupying, predominantly a single j = 11/2 subshell. The pattern undergoes a
simple modification if occupancy extends to a second subshell, with j = 1/2, as shown
in figure 4.21. Basic details are presented in chapter 5, section 5.2. Manifestly, this is
dominated by the mixing of two near-degenerate 0+ configurations. Note that in even-even
nuclei, with the “depression” of the ground state, the configuration mixing leads to the 2+

1
appearing anomalously high. It can be tempting (some people have been tempted) to interpret
a relatively high energy 2+

1 state as the signature of an energy gap between subshells, when
in fact the subshells are nearly degenerate in energy as illustrated here. In figure 2.8 some
exceptionally high energies for 2+

1 states in 90Zr and 96Zr are noted, also such a feature is
associated with 68Ni: these are all examples of the effect depicted in figure 4.21.

Great caution is needed when making model-based interpretations of data: the result can
be a spurious interpretation of the structure observed, when the effect is due to completely
different physics than that expressed in the model. In the present circumstance, the physics
of the shell model is that of independent particles confined in a spherical mean-field poten-
tial; whereas the actual physics is that of correlated pairs. These correlations are essential
to making the step from a highly idealized set of independent-particle shell model states,
which are a model concept, into understanding the states actually observed in nuclei. The
message is: assume correlations are always present in quantum many-body systems; even
when independent-particle behavior appears to dominate.

An indirect and subtle effect of pairing correlations, yet familiar in data plots, is the

Jenkinswood,	Fig.	4.19		

1h11/2	m	scheme,	one	broken	pair	even	mass	mmax	=	11/2	+	9/2											=	10						à	J	=	10	
																																																															odd	mass	mmax	=	11/2	+	9/2	+	7/2	=	27/2	à	J	=	27/2											



	N	=	82	isotones:	
high-spin	(yrast)	states	in	proton-rich	nuclei	
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4.2 Pairing-dominated structures in single-closed shell nu-
clei

The most easily identified structures in singly-closed shell even-mass nuclei are illustrated
in figures 4.18 and 4.19. The excitation patterns can be understood from the semi-classical
perspective of orbital overlap and a short-ranged attractive pairing interaction, as illustrated
in figure 4.20. The structures presented in figures 4.18 and 4.19 are dominated by 1h11/2 shell
model configurations, neutron configurations in the Sn isotopes and proton configurations in
the N = 82 isotones. Note that the resulting states are near identical, at a semi-quantitative
level, i.e. excitation energies, independent of whether protons or neutron are involved and
independent of the number of nucleons in the 1h11/2 orbital.
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Figure 4.18: Singly closed shell nuclei with N = 82 for which the low-energy structure is
dominated by a broken pair in the 1h11/2 orbital. Note, in 152Yb and 154Hf the decay of
the 8+ states (not shown in the figure) is to 7� states at 2550 and 2457 keV, respectively;
in 148Dy and 150Er the 8+ states decay partially to 7� states at 2738 and 2633 keV, respec-
tively. Other states at low energy are: 3� states — 148Dy(1688), 150Er(1786), 152Yb(1890),
154Hf(2011), and 5� states — 148Dy(2348), 150Er(2260), 152Yb(2203), 154Hf(2146). These
negative-parity states involve a single broken pair, either 1h11/2-3s1/2 or 1h11/2-2d3/2.

The states with the highest spins, shown in figures 4.18 and 4.19 are dictated by the Pauli
exclusion principle: thus, for a j = 11/2 broken pair in an even-even nucleus, m j = 11/2
and 9/2 couple to give M = 10, whence Jmax = 10; similarly in an odd-mass nucleus, m j =
11/2, 9/2, and 7/2 couple to give M = 27/2, whence Jmax = 27/2. The excitations in each
nucleus are arbitrarily normalized at J = 8 (even mass) and J = 27/2 (odd mass) to reveal
the similarities of the high-spin state relative energies. The even-even nuclei only exhibit
even-integer spin values, again, because of the Pauli exclusion principle. This is determined
using the so-called “m scheme”, details of which are given below. The possible odd-mass
spin values are more complicated and can also be determined using the m scheme.

Jenkinswood,	Fig.	4.18		

1h11/2	m	scheme,	one	broken	pair	even	mass	mmax	=	11/2	+	9/2											=	10						à	J	=	10	
																																																															odd	mass	mmax	=	11/2	+	9/2	+	7/2	=	27/2	à	J	=	27/2											



Short-range	attractive	interaction	and	orbital	
overlap	describes	coupling	in	spherical	nuclei	
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Figure 4.20: Schematic view of the interaction energy between a pair of identical high- j
nucleons. The data are taken from [18] where more details can be found.

smooth variation of separation energies across multiple subshells that are not degenerate
in energy. The naı̈ve expectation vs. the observed behavior is depicted schematically in
figure 4.22. The observed behavior of Sn in the tin isotopes and of Sp in the N = 82 isotones,
are shown in figures 4.23 and 4.24.

The lowest lying states in odd-mass single-closed shell nuclei can be assigned spherical
shell model labels, again with the proviso that pairing correlations play an important role in
their energies. The example of the odd-Z isotones with N = 82 are shown in figures 4.25 a, b.
Indeed, proton-pairing correlations will be present in all of these nuclei except 133Sb. There
would appear to be a subshell energy gap between the 1g7/2 + 2d5/2 pair of subshells and
the 1h11/2 + 2d3/2 + 3s1/2 group of subshells, as manifested in the shifts of states between
145Eu and 147Tb. However, a cautionary observation has already been made with respect
to figure 4.21. These apparently spherical independent-particle degrees of freedom involve
significant pairing correlation contributions to their energies. Discussion of this is beyond
the present level of detail. There are noticeable “extra” states in 135I and 137Cs, evident in
figure 4.25 b, between 800 and 1500 keV. These are the broken-pair states that can occur for
the 1g7/2 configuration. Again, discussion is beyond the present level of detail.

The nuclear structure involved in all of these excitation patterns involves so-called “Cooper”
pairs. These are highly correlated nucleon pair degrees of freedom, which can be expressed,
most simply, using the form

|one pair in many-j subshellsi = Â
j

a j | j, j̄ i , (4.1)

Jenkinswood,	Fig.	4.20		



Effect	of	two	j	subshells:	
j	=	½	produces	a	high	21+	energy	via	mixing	and	“repulsion”	

of	0+	configurations	
5.3. PAIRING MODELS FOR NUCLEAR STRUCTURE 131
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Figure 5.12: Systematics of selected positive-parity states in the N = 50 isotones. These
states are dominated by the proton configurations 2p1/2 and 1g9/2. The appearance of two
states with 0+ in 90Zr (and two states with 9/2+ in 91Nb) is explained by mixing of the
pair configurations

���2p2
1/2;J = 0

E
and

���1g2
9/2;J = 0

E
, as described by the model shown in

figure 5.11. This mixture of configurations is supported by data shown in figures 5.13 and
5.15.

A direct consequence of the diffuse occupancy of shell model orbits that result from
pairing correlations is, e.g., one-proton pickup and stripping reactions on 90Zr populate states
in 89Y and 91Nb that would not be observed if the shell model orbitals had a sharply defined
occupancy. This is depicted in figure 5.15.

Jenkinswood,	Fig.	4.21		

MIX	

1g9/2	m	scheme,	one	broken	pair	even	mass	mmax	=	9/2	+	7/2											=	8								à	J	=	8	
																																																													odd	mass	mmax	=	9/2	+	7/2	+	5/2	=	21/2	à	J	=	21/2											



Intruder	state	“parabolas”:	
the	signature	of	shape	coexistence	87
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Figure 4.3: Shape coexistence in the Z = 82 and Z = 50 closed shell nuclei: a and b. the even-
even Pb and Sn isotopes; c and d. the even-even Hg and Cd isotopes. The mid-shell points at
N = 104 and N = 66 are indicated. States connected by green lines are yrast states and are
easy to populate for experimental study. States connected by red lines are much harder to
populate. The second excited 0+ states in 186,188Pb are shown in purple. (The closely spaced
high-spin states at high energy for 108  N  124 and 66  N  80 are so-called “seniority”
structures — see chapter 5.)
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Intruder	state	parabolas	scale	in	the	number	
of	pairs	(no	“deformation-driving”	orbitals)	
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Figure 4.14: Similarity in excitation energies of deformed-band 0+ states in the Pb (Z = 82)
isotopes and the intruder state band heads in the odd-mass Tl (Z = 81) and Bi (Z = 83)
isotopes. The structure of the intruder states is shown schematically in the top right-hand
corner. They can be described as 1p-2h states in the Tl isotopes and as 2p-1h states in the Bi
isotopes: the letter ‘p’ is the configuration of the 83rd proton, i.e. a 1h9/2 particle; the letter
‘h’ is the configuration of the 81st proton, i.e. 3s1/2 hole. The correlations are manifestly
produced by the ‘2p’ and ‘2h’ configurations, i.e. the pairs: these are correlated pairs of
protons (particles and holes behave equivalently), which interact with the correlated pairs
of neutrons across the shell to produce the parabolic energy trend with a minimum at mid
shell, i.e. where the number of neutron pairs is a maximum. Note that the energy plotted
for 82Pb p(2p-2h) is 12 ⇥ E(0+

2 ). This matches the observed systematics of the p(1p-2h)
and p(2p-1h) state energies and is a clear signature that: the energies are controlled by the
number of correlated proton pairs, independent of the unpaired particle configurations.

Jenkinswood,	Fig.	4.14		
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Figure 1.78: The spectrum of deuterons observed in the single-proton stripping reaction 115In(3He, d)116Sn
at an angle of 20� with respect to the 3He beam at a bombarding energy of 25.3 MeV. The spectrum
dramatically illustrates the e�ect of the proton shell gap at Z = 50 on the proton degrees of freedom in
116Sn. (The figure is taken from Shoup R. et al. (1969), Nucl. Phys. A135, 689.)

and all lie above 3.8 MeV. A comparison of these energies with the �(2p�2h) state at
1.757 MeV indicates an interaction energy between these protons and the neutrons
in 116Sn of ⇠ 6 MeV. It is clear that these deformed bands in the even-Sn isotopes
result from a proton pair excitation across the Z = 50 closed shell together with
the interaction of these protons with the neutrons in the open 50 < N < 82 shell.

Shape coexistence occurs in nuclei adjacent to singly-closed shells. This is shown
for the even-mass cadmium isotopes (Z = 48) in Figure 1.79. These isotopes are
seen to exhibit a coexistence of candidates for harmonic quadrupole vibrations built
on the ground state (cf. Figure 1.48(b)) and rotations built on excited 0+ states
that are nearly degenerate with the (possibly) two-phonon vibrational triplets.

Shape coexistence also occurs in nuclei with strongly-deformed ground states.
A number of such cases are known in the actinide region. They are distinguished
by the ease with which the band head undergoes spontaneous fission. The fission-
ability of these states is consistent with their very large deformation. (Compare the
spontaneous fission half lives for 238gU (g.s.) and 238mU (s.f. isomer) of 2.6 ⇥ 1023s
and 4.5 ⇥ 10�6s, respectively, i.e., the isomer fissions ⇠ 1029 times faster than the
ground state.) A view of the fissioning shape isomers in the actinides is shown in
Figure 1.80. States with such large deformation are termed superdeformed.

90

FIG. 4.12.
Figure 4.12: Spectrum of deuterons from the one-proton stripping reaction
115In(3He,d)116Sn. The strength reveals the excitation at which p(1p-1h) structures
become important and reflects the large shell model energy gap of ⇠4 MeV at Z = 50.
In contrast, the p(2p-2h) configurations are at ⇠2 MeV, i.e. ⇠6 MeV lower than a naı̈ve
expectation that they should be at ⇠8 MeV: this is the result of correlation energy. The
figure is reproduced from Rowe & Wood and is based on a figure in [11].
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Figure 4.13: Collective bands and proton hole states in the odd-mass Tl (Z = 81) isotopes.
The term “intruder” is clarified in figure 4.14.

Jenkinswood,	Fig.	4.13		



2

1097

1293

355

417

463

85

304

734

469

279
166

(198)270

819

2226

932

2112

1236

138

503641

01 0

21

1293

41 2391

021757

222112

422529

032027
232225

613033
2p-2h Band

FIG. 1. A partial level scheme of 116Sn where only selected
transitions are presented to highlight the strong mixing that
occurs between the low-spin members of the intruder band
with other low-lying states. The widths of the arrows repre-
sent the E2 transition strengths. Only upper limits are avail-
able for the 166-, 198-, 304-, and 417-keV transitions. The
270-keV 0+3 ! 0+2 transition has an E0 transition strength of
⇢2=103 ·103 [5]. The half-life of the 3032-keV state has not
been measured, so the widths of the arrows for the 503- and
641-keV � rays represent their B(E2) values relative to each
other.

should be treated with some caution as it is dependent
on an estimate of the intensity of the 85-keV � ray and
�-ray intensities from Ref. [7]. Even though questions
were raised as to which 0+ state was the band head of
the ⇡ 2p�2h band [8], the 1757-keV 0+2 state was adopted
as the band head and other possibilities were not further
investigated.

The 2+2 and 2+3 states: There is no evidence that sug-
gest strong mixing between these low-lying 2+ states. As
only weak transitions are observed populating the excited
0+ states from the 2225-keV 2+3 state, the majority of the
rotational character of the ⇡ 2p� 2h band is assumed to
be contained in the 2112-keV 2+2 state. The 2225-keV 2+3
state is strongly populated in the (d, p) reaction with a
spectroscopic factor of 0.98 [9], indicating that it contains
primarily neutron character. The di↵erent configurations
of these two states is further highlighted by the absence
of the 113-keV � ray that would connect them.

The 4+1 and 4+2 states: The 2391-keV 4+1 and 2529-
keV 4+2 states are both populated by the 6+ member
of the rotational band (at 3033 keV) via 641-keV and
503-keV � rays respectively. The half-life of the 3033-
keV state has not been measured, but the ratio B(E2;

641 keV)/B(E2; 503 keV) can be deduced as 1.9(2) from
previously reported �-ray branching ratios [10]. Each 4+

state has a strong transition strength to the 2+ rota-
tional band member (at 2112 keV), which suggests that
these states are mainly comprised of proton configura-
tions. Further evidence of the similar structure of these
states comes from the observation of the intense 138-keV
� ray that connects them. This fact suggest that the 4+1
and 4+2 states are mixed in a similar manner to the 0+2
and 0+3 states.
The low-lying levels of 116Sn are populated in the ��

decay of 116In. In the past, such studies have been lim-
ited; there are measurements from over 30 years ago
[5, 8], and a recent study constrained to �-ray sin-
gles spectroscopy [11]. Today, intense sources of mass-
separated radioactive indium isotopes can readily be pro-
duced, and when combined with large arrays of Compton-
suppressed high-purity germanium (HPGe) detectors, al-
lowing for very weak decay branches in the tin daughters
to be studied with high precision.
In the present work the nature of these low-lying states

is further investigated in a detailed study of 116Sn from a
high-statistics �� decay measurement. Evidence is pre-
sented to show that the 2027-keV 0+3 state should replace
the 1757-keV 0+2 state as the band-head of the intruder
⇡ 2p� 2h rotational band.

EXPERIMENTAL SETUP

The measurements were performed with the 8⇡ spec-
trometer at the TRIUMF-ISAC facility in Vancouver,
BC [12]. A radioactive beam of 116In was produced
by spallation reactions of a 40-µA, 500-MeV proton
beam delivered by the TRIUMF cyclotron onto a natTa
high-power production target. A singly-charged mass-
separated beam of A=116 ions was produced with a
surface ionization source. The resulting beam delivered
to the 8⇡ spectrometer consisted of 1.2x104 s�1 of the
I⇡=1+ T1/2=14.10(3) s 116gIn ground state, 4.0x106 s�1

of the I⇡=5+ T1/2=54.29(17) min 116m1In isomer, and
3.2x105 s�1 of the I⇡=8� T1/2=2.18(4) s 116m2In isomer.

The beam was implanted onto a moveable mylar tape
at the center of the 8⇡ spectrometer for cycles of one
hour of beam implantation followed by one hour with-
out beam. The implantation spot on the tape was trans-
ported behind a thick lead wall after each cycle to reduce
the probability of detection of any long-lived contami-
nants that may have been present. The 8⇡ spectrome-
ter consists of 20 high-purity germanium (HPGe) detec-
tors equipped with bismuth germanate (BGO) Compton-
suppression shields. The array was coupled with a plas-
tic scintillator for � particle detection located at zero
degrees with respect to the beam, and the PACES ar-
ray of 5 Si(Li) detectors for conversion-electron detec-
tion [13]. The resultant �-singles data contained 6x109

116Sn	

183	

445	

9713	

B(E2)	W.u.	
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12.44	

3821	

0.053	

53	
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>12	 >0.23	
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Complex	spectroscopy	in	116Sn		

Critical	need:	
Intensities	of	high-lying	
low-energy	transitions.	

See:	
J.L.	Pore	et	al.,	
Eur.	J.	Phys.	A53	(2017)	27;	
D.S.	Cross	et	al.,	
ibid.	A53	(2017)	216.	
TRIUMF-ISAC-8pi-PACES	
+	ENSDF	T1/2	
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Fig. 1. The top figure shows values of B42 ≡ B(E2;4+
1 → 2+

1 ) in comparison with corresponding values of
B20 ≡ B(E2;2+

1 → 0 +
1 ) for all doubly-even nuclei with A > 56, which are considered “non-rotational”, i.e. B20 <

10 0 W.u., E(4)/E(2) < 3. The three lines indicate the slopes corresponding to the harmonic vibrator, the axi-
ally-symmetric rigid rotor and a least-square fit to the data. The lower figure shows ratios of the excitation energies
of the 4+

1 and 2+
1 states, E(4)/E(2), versus the corresponding B20 values. The ratios given by vibrational and axi-

ally-symmetric rigid rotor models are indicated by horizontal lines. (The perspective provided in this figure has emerged
in a global survey [1] of E2 properties of heavy (A > 56) doubly-even nuclei.)

observed moments of inertia and electromagnetic sum-rule considerations that rotational mo-
tions are far from the irrotational flows expected of a quantum fluid. [Recall, as shown long
ago [3], that observed moments of inertia for nuclei are typically of the order of five times their
(vortex-free) irrotational-flow values.] From a hydrodynamic model perspective, there is a need
to include vorticity degrees of freedom.

The way to formulate a collective model with vorticity degrees of freedom is well understood
[4,5]. The appropriate model, the symplectic model [6], turns out to be a submodel of the nu-
clear shell model. The irrotational-flow Bohr model is regained by taking the contraction limit

¢	

¢	
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Figure 4.35: Systematics of bands on 11/2� states in the odd-mass La (Z = 57) isotopes.
Some more details are given in the text. (Reprinted with permission from [22]. Copyright
(1972) by the American Physical Society.)

There	are	configurations	with	(near)	perfect	rotation	alignment	

Jenkinswood,	Fig.	4.35		
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Fig. 2. The experimental (black) and irrotational (red) moments of inertia relative 
to the leading-order rigid-body value as a function of β2 sin2(γ − 2πk/3) for the 
1-axis (a), 2-axis (b), and 3-axis (c), respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

axes. However, the degree to which the 3-axis does deviate from 
the others, cf. the 172Yb outlier at γ = 4.9◦ in Fig. 3(c), may in-
dicate a partial coupling to the intrinsic motion, expected for a 
γ vibration. Alternatively, the 172Yb outlier may be the result of 
configuration mixing due to a relatively low-lying 0+

2 band head; 
note that 2+

γ = 2+
3 .

The relative moments of inertia as a function of axial asym-
metry, γ , are shown in Fig. 4 for all three axes. The relative irro-
tational values are shown for comparison. Note the normalization 
of the scale to J1. The relative moments of inertia are qualitatively 
consistent with irrotational flow (cf. clarification in the conclusion). 
It is also clear J1 > J2 ∼ J3 is manifested in nuclei that approach 
the triaxial limit of the electric quadrupole tensor, γ = 30◦; this is 
a feature of the Bohr Hamiltonian that was pointed out by Meyer-
ter-Vehn [36] in 1975 and it is now shown for the first time to be 
exhibited qualitatively by nuclei. Recent Coulomb excitation results 
of 110Ru [26] establish it as the best candidate for triaxiality near 
the ground state to date. Additional Coulomb-excitation results for 
the neutron-rich Mo–Ru region with higher precision would be 
valuable. The outliers, 172Yb and 156Gd, correspond to cases with 
low-lying excited 0+ states (with K π = 0+, 2+ bands).

Fig. 3. The experimental moments of inertia relative to the irrotational flow value 
as a function of γ for the 1-axis (a), 2-axis (b), and 3-axis (c), respectively.

Fig. 4. The relative moments of inertia for all three axes as a function of axial asym-
metry, γ . The experimental values (circles) have been normalized to the irrotational 
values (lines) through the 1-axis.

The empirical 2+ mixing parameter, $, as a function of axial 
asymmetry, γ , is shown in Fig. 5(a). The rigid and irrotational val-
ues are shown for comparison. The experimental mixing strength 
reveals qualitative agreement with the irrotational flow expecta-
tion; this is due to the fact that the mixing is only dependent on 
the relative moments of inertia, which eliminates the explicit ir-

J.M.	Allmond	and	JLW		
Phys.	Lett.	B767	226	(2017)	

J.M. Allmond, J.L. Wood / Physics Letters B 767 (2017) 226–231 227

the variances are known, e.g., the Os isotopes [12], lack precision 
but suggest that nuclei are neither rigid nor soft but somewhere 
in between.

We explore the implications of assuming β- and γ -rigid de-
formation (i.e., an axially asymmetric top) on the extracted mo-
ments of inertia. This is accomplished by using a recently formu-
lated version of the triaxial rotor model with independent electric 
quadrupole and inertia tensors [13]; this is the simplest possible 
non-trivial view that allows a unique analytical solution to the 
three moments of inertia within the spin-2 subspace. While there 
have been investigations into the moments of inertia of axially 
asymmetric nuclei before, e.g., Refs. [14–18], empirical values for 
all three axes, to our knowledge, have never been reported.

In this Letter, empirical moments of inertia, J1, J2, J3, of 12 
atomic nuclei with E(4+

1 )/E(2+
1 ) > 2.7 are extracted from exper-

imental 2+
g,γ energies and electric quadrupole matrix elements, 

and the results are compared to expectations based on rigid and 
irrotational inertial flow. The E2 matrix elements used in this 
study are from multiple-step Coulomb excitation data [12,19–26], 
most of which are from the past two decades. Only by having 
the signs of the E2 matrix elements, i.e., ⟨2+

g ||M̂(E2)||2+
g ⟩ and 

⟨0+
g ||M̂(E2)||2+

g ⟩⟨2+
g ||M̂(E2)||2+

γ ⟩⟨2+
γ ||M̂(E2)||0+

g ⟩, can a unique so-
lution to all three components of the inertia tensor be obtained.

The Hamiltonian for rotations about three axes (i.e., an asym-
metric top) is

H = A1 Î2
1 + A2 Î2

2 + A3 Î2
3, (1)

where the parameters A1, A2, A3 are related to the components 
of the inertia tensor by A1 = h̄2/(2J1), A2 = h̄2/(2J2), A3 =
h̄2/(2J3) and Î1, ̂I2, ̂I3 are the angular momentum operators in 
the body-fixed frame with a |I K ⟩ basis. The Hamiltonian can be 
rewritten as

H = A Î2 + F Î2
3 + G( Î2

+ + Î2
−), (2)

where

A = 1
2
(A1 + A2), F = A3 − A, G = 1

4
(A1 − A2), (3)

and

Î± = Î1 ± i Î2. (4)

When applied to doubly-even nuclei, there is an Iπ = 0+ ground 
state with E(0+) = 0, no Iπ = 1+ state, and two mixed Iπ = 2+

states (K π = 0+, 2+) with energies given by

H(2+) =
(

6A 4
√

3G
4
√

3G 6A + 4F

)
, (5)

which yields

E(2+) = 6A + 2F ± 2
√

F 2 + 12G2. (6)

The mixing angle is related to G and F by

tan 2$ = 2
√

3
G
F

(7)

(note, $ < 0 because G < 0) and the resulting E2 matrix elements 
for the Iπ = 0+, 2+ subspace are

⟨0+
g ||M̂(E2)||2+

g ⟩ =
√

5
16π

Q 0 cos(γ + $), (8)

⟨0+
g ||M̂(E2)||2+

γ ⟩ =
√

5
16π

Q 0 sin(γ + $), (9)

⟨2+
g ||M̂(E2)||2+

γ ⟩ =
√

25
56π

Q 0 sin(γ − 2$), (10)

and

⟨2+
g ||M̂(E2)||2+

g ⟩ = −
√

25
56π

Q 0 cos(γ − 2$)

= −⟨2+
γ ||M̂(E2)||2+

γ ⟩. (11)

The E2 matrix elements are described by three parameters, Q ◦
(axial deformation), γ (axial asymmetry), and $ (mixing angle). 
Further details can be found in Refs. [13,25,27–29]. While the 2+

mixing angle, $, can be inferred from the excitation energies of 
higher spins, such an approach is not particularly sensitive and, 
more importantly, it does not lead to a unique empirical value.

Once the Q ◦ , γ , and $ deformation and mixing parameters are 
determined from the experimental E2 matrix elements, the A, F , 
and G parameters of the Hamiltonian can be extracted exactly us-
ing the experimental 2+ energies, viz.

F =
E(2+

γ ) − E(2+
g )

4
√

1 + tan2(2$)
, (12)

A =
E(2+

g ) + E(2+
γ ) − 4F

12
, (13)

G = F

2
√

3
tan 2$, (14)

where the empirical moments of inertia are

J1 = 1
2

h̄2

A + 2G
, (15)

J2 = 1
2

h̄2

A − 2G
, (16)

J3 = 1
2

h̄2

A + F
. (17)

It is important to stress that the signs of the E2 matrix ele-
ments are required to obtain a unique solution to all three com-
ponents of the inertia tensor. In particular, ⟨2+

g ||M̂(E2)||2+
g ⟩ de-

termines whether the electric quadrupole moment is prolate or 
oblate, and ⟨0+

g ||M̂(E2)||2+
g ⟩⟨2+

g ||M̂(E2)||2+
γ ⟩⟨2+

γ ||M̂(E2)||0+
g ⟩ de-

termines whether γ > |$| or γ < |$|.
The present results can be connected directly to results ob-

tained using rigid and irrotational flow moments of inertia by

Jrigid, k = Brigid

[

1 −
√

5
4π

β cos
(
γ − k

2π

3

)]

(18)

and

Jirrot., k = 4Birrot.β
2 sin2

(
γ − k

2π

3

)
, (19)

where k = 1, 2, 3, Brigid = 2
5 M R2 = 0.0138 × A5/3 (h̄2/MeV), 

Birrot. = 3
8π M R2 = 0.00412 × A5/3 (h̄2/MeV), β = Q ◦

√
5π/(3Z R2), 

and R = 1.2A1/3 (fm). It is important to highlight the fact that the 
irrotational-flow component of the moment of inertia in Eq. (19)
resides in the mass parameter, Birrot. . The β2 sin2

(
γ − k 2π

3

)
de-

pendence is not explicitly limited to irrotational flow but results 
from the SO(5) invariance of the Bohr Hamiltonian (which hap-
pens to be fulfilled by irrotational flow), cf. page 121 of Ref. [10].

The mixing strength can be determined from the moments of 
inertia by

$ = 1
2

tan−1

(
√

3
J2 − J1

2J1J2
J3

− J2 − J1

)

, (20)

k =	1	norm.	to	data	
	
k =	2	
	
k =	3	symm.	axis		
			@	γ = 0° and 60° 
 
NOTE:	relative	values	
do	not	prove	irrotational	
flow—they	conform	to		
the	SO(5)	invariant	form		
of	the	inertia	tensor.		

Nuclear	moments	of	inertia	fitted	to	a	triaxial	rotor	model	
						with	independent	components	of	the	inertia	tensor		
	

NEED	MORE	DATA	



			14C					
7012.4					
		1.83	

			18O					
1982.1					
		3.329		

		18Ne			
1887.3			
	17.718	

8O8	

		38Ca			
2213.2				
			2.56	

		42Ca			
1524.7					
		9.54	

		38Ar			
2167.5					
		3.4016	

		42Ti				
1554.6		
		164	

			20Ca20	

		46Ar			
15771								
			4.08	

		46Ca			
1346.0					
		3.63		

			50Ca			
1026.7				
		0.682	

		50Ti				
1553.8					
	5.4619	

20Ca28	

			54Fe			
1408.2			
		11.13	

		54Ni			
1392.3			
	10.020	

			58Ni			
1454.2			
		10.04	

28Ni28	

		134Te			
1279.1	
	5.1221	

	206Pb					
803.1					
	2.809	

210Pb					
799.7					
1.44	

210Po			
1181.4					
0.5612		

	
50Sn82	

	
82Pb126	

Ex	(keV)	
B(E2;	21+	à	01+)	W.u.	

CONCLUSION:	
neutrons	can	have	effective	
electric	quadrupole	“charges”		
as	large	as	protons.		

N	=	Z	 N	>	Z	

Use	of	effective	charges	abandons	any	prospect	
of	discovering	where	E2	collectivity	comes	from.	

Isospin	mirror	
										pairs	

48	

132	

208	

16	

40	

56	

Headache:	shell	model	calculations	have	to	use	effective	E2	“charges”:	
		STANDARD	VALUES–	en	=	+0.5	e,	ep	=	+	1.5	e;	but	here	...	?	



Weakly	deformed	nuclei	
There	is	a	serious	lack	of	systematic	data.	
	
Triaxial	rotor	descriptions	need	thorough	exploration.	
	
Shape	coexistence	needs	to	be	systematically	identified.	
	
How	weak	can	deformation	be	and	still	yield	a		
					useful	coupling	scheme?	

FOOTNOTE:	When	David	Jenkins	and	I	came	to	weakly	deformed	nuclei	and	a		
planned	chapter	in	“Nuclear	Data:	a	Primer”,	after	extensive	scrutiny	of	the	data		
base	we	decided	that	there	was	such	a	serious	lack	of	systematic	data	that	it	was		
not	possible	to	present	a	useful	view	at	an	introductory	level.	


