Cosmíc Alchemy:

The Orígín of the Chemícal Elements

Eric Norman Nuclear Engineering Dept. Univ. of California at Berkeley

Dark Night Sky

Visible EM Spectrum

What is the universe made of ?

• Hydrogen = 75%, by mass

• Helium = 23 %

• Everything Else = 2%

А

Evidence for Big Bang

- 1. Expansion of the universe
- 2. Cosmic microwave background
- 3. Light element abundances

Figure 1: Nuclear reactions - http://physicsworld.com/cws/article/print/30680/1/PWfea4_08-07

Benjamin Topper

Lack of stable A = 5 or A = 8 nuclei prevents heavy element production in Big Bang

Figure 24.1: The primordial abundances of ⁴He, D, ³He, and ⁷Li as predicted by the standard model of Big-Bang nucleosynthesis — the bands show the 95% CL range [47]. Boxes indicate the observed light element abundances. The narrow vertical band indicates the CMB measure of the cosmic baryon density, while the wider band indicates the BBN D+⁴He concordance range (both at 95% CL).

Recent results from LUNA collaboration Nature **587** (2020) 210

Table 1 | Mean values and 68% confidence level ranges for $\Omega_{\rm b}h^2$ (with relative uncertainties δ) and $N_{\rm eff}$

$\Omega_{\rm b}h^2$	δ(%)	N _{eff}
0.02271±0.00062	2.73	3.045
0.02233 ± 0.00036	1.61	3.045
0.02230 ± 0.00021ª	0.94	3.045
0.02236 ± 0.00015	0.67	3.045
0.02224 ± 0.00022	0.99	2.95 ± 0.22
0.0221±0.0006	2.71	2.86 ^{+0.28} _{-0.27}
	$Ω_b h^2$ 0.02271±0.00062 0.02233±0.00036 0.02230±0.00021° 0.02236±0.00015 0.02224±0.00022 0.0221±0.0006	$Ω_b h^2$ δ (%)0.02271±0.000622.730.02233±0.000361.610.02230±0.00021°0.940.02236±0.000150.670.02224±0.000220.990.0221±0.00062.71

S-factor for the $d(p,\gamma)^{3}$ He reaction

Implications:

Baryonic matter represents only a few percent of the critical density

There are only 3 active neutrino species

Hertzsprung-Russell Diagram

The Sun shines by nuclear fusion reactions!

Hans Bethe Nobel Prize 1967

CNO Cycle

Main hydrogen burning mechanism in more massive stars

Predicted fluxes of solar neutrinos at Earth

 Φ_{ν} = 2 x L_{sun}/Q and L_{sun} = 1.2 kW/m² Q = 25 MeV $\rightarrow \Phi_{\nu}$ = 6x10¹⁰/cm²/sec

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Recent Observations of Solar pp, pep, ⁷Be, and CNO Neutrinos by Borexino Collaboration

Helium Burning in Red-Giant Stars

t_{1/2}(⁸Be) = 10⁻¹⁶ sec

At T = $1x10^{8}$ K and $\rho = 10^{5}$ g/cc: N(⁸Be)/N(⁴He) = $1x10^{-9}$

Burbidge, Burbidge, Fowler, Hoyle B²FH (1957)

Fig. 5-18 The energy-level diagram of C^{12} . Alpha particles may fuse with the transient Be⁸ nuclei to form the 7.644-Mev state of C^{12} . This state usually breaks up by rejecting the alpha particle, but with a smaller probability it also decays electromagnetically to the 4.433-Mev state.

Clayton

See talk by Tibor Kibedi and Phys. Rev. Lett. 182 (2020) 182701 for recent measurements of Γ_{pair} , Γ_{γ}

THE ¹²C(α, γ)¹⁶O REACTION AND STELLAR HELIUM BURNING[†]

P. DYER and C. A. BARNES

California Institute of Technology, Pasadena, California 91109

Nuclear Physics A 233 (1974) 495 9847Subthreshold \mathcal{Z} 88717 1⁻ state plays major role in ¹⁶O production 71187 6.919 12C+a 71616 6050 61307 0+3 ground state 0* 16,

Fig. 1. Lowest states of the ¹⁶O nucleus ³).

Basdevant *et al.* argue that this arrangement of nuclear levels is the only one that allows for significant amounts of ¹²C to be produced in stars. (Fundamentals in Nuclear Physics, Springer, 2005)

Fate of Stars

For stars with masses < 10 M_{Sun}
No further nuclear reactions possible
→ White Dwarf (maximum mass = 1.4 M_{Sun}) *Chandrasekhar Mass limit*Supported by electron degeneracy pressure

For more massive stars,

- No such quiet fate possible
 - \rightarrow Neutron Star or Black Hole

Subrahmanyan Chandrasekhar Nobel Prize 1983

Advanced stellar burning

¹²C + ¹²C \rightarrow ²⁴Mg + γ , ²⁰Ne + ⁴He ¹⁶O + ¹⁶O \rightarrow ³²S + γ , ²⁸Si + ⁴He

PHYSICAL REVIEW C 95, 015805 (2017)

Decay branching ratios of excited ²⁴Mg

J. M. Munson et al.

At this point the star is on its deathbed, No further energy generation possible

Late stage massive star

Burning Stage	Temperature (keV)	Density (g/cm ³)	Timescale	
Hydrogen	5	5	7 x 10 ⁶ years	Nonburning hydrogen
Helium	20	700	5 x 10 ⁵ years	Hydrogen fusion
Carbon	80	2 x 10 ⁵	600 years	Carbon fusion
Neon	150	4 x 10 ⁶	1 year	Neon fusion Magnesium
Oxygen	200	1 x 10 ⁷	6 months	fusion Silicon fusion
Silicon	350	3 x 10 ⁷	1 day	Iron ash
Collapse	600	3 x 10 ⁹	seconds	
Bounce	3000	10 ¹⁴	milliseconds	
Explosion	100 - 600	varies	0.1 – 10 seconds	

Supernova Explosion

Temperature goes up Density goes up

 $p + e^{-} \rightarrow n + \nu_{e}$ $e^{+} + e^{-} \rightarrow \nu + \overline{\nu}$

99% of SN energy comes off in neutrinos

SN 1987a

Neutrinos from SN1987a observed by Kamiokande and IMB underground telescopes

⁵⁶Co gamma rays observed from SN1987a

PRC 40 (1989) 445

⁴⁴Ti gamma rays observed from CasA

t_{1/2}(⁴⁴Ti) = 62<u>+</u>2 years Norman *et al.* PRC **57**(1998) 2010

σ(⁴⁰Ca(α,γ)⁴⁴Ti R.D. Hoffman *et al.* Ap. J. **715**(2010) 1383

E. Zinner *et al.* Washington Univ.

Pre-solar graphite grains from Murchison meteorite containing TiC inclusions

Isotopic properties of silicon carbide X grains from the Murchison meteorite in the size range 0.5–1.5 µm

PETER HOPPE1,2*, ROGER STREBEL1,2, PETER EBERHARDT2, SACHIKO AMARI3,4 AND ROY S. LEWIS4

FIG. 8. Calcium-44 and Ca/Si ratios in presolar SiC grains from the Murchison separates KJC and KJD. δ^{44} Ca/⁴⁰Ca = [(44 Ca/⁴⁰Ca)/(44 Ca/⁴⁰Ca)_ \odot - 1] × 1000 with (44 Ca/⁴⁰Ca)_ \odot = 0.0212. Errors are 1 σ . Five X grains (X57, X58, X59, X72, X74) have large excesses in 44 Ca by factors between 3 and 20, indicative of extinct 44 Ti. A few other X grains are enriched in 44 Ca by up to a factor of 3, but errors are large for those grains.

Supernova Remnants

•Neutron star – supported by neutron degeneracy pressure –Upper limit on neutron star mass ~ 2.5 M_{Sun} *Oppenheimer-Volkoff limit*

Higher masses \rightarrow black hole

 $\mathbf{R}_{\mathbf{Schwarzschild}} = 2\mathbf{GM/c^2}$

For $1 M_{Sun}$, $R_s = 3 km$

Origin of Heavy elements

Neutron capture reactions **slow (s) process** produces half of nuclei from ⁵⁶Fe → ²⁰⁹Bi occurs during He-burning in red giant stars

rapid (r) process

produces other half of nuclei heavier than ⁵⁶Fe plus Th and U

occurs in supernovae, neutron star mergers ?

s and r processes

s – process

Believed to occur during He-burning in red giant stars

Neutron sources : ${}^{13}C(\alpha,n){}^{16}O$, ${}^{22}Ne(\alpha,n){}^{25}Mg$ reactions

at
$$T \sim (1 - 4) \times 10^8 \text{ K}$$
, $n_n \sim 10^8 / \text{cm}^3$

 $r_{n\gamma}$ = n_n<σv> = (10⁸/cm³)(10⁻²⁵ cm²)(2x10⁸ cm/s) = 2 x 10⁻⁹/s → τ_{nγ} ~ 15 years !

 $dN_A/dt = \sigma_{A-1}N_{A-1} - \sigma_AN_A$

At equilibrium, $dN_A/dt = 0$

→ expect $\sigma_{A-1}N_{A-1} = \sigma_A N_A = constant$

Kappeler *et al.* Rev. Mod. Phys. 83 (2011) 157

Termination of s-process

At207 9/- 1.81 h ε $β^+$ γ 814.4, 588.3, 300.7, α 5.758 E 3.91	At208 6 + 1.63 h ^ε ^{β+} ^γ 686.5, 660.0, 177.6, α 5.641 ω, E 4.98	At209 9/- 5.4 h ^ε 7 545.0, 781.9, 790.2, α 5.647, E 3.49	At210 (5) + 8.1 h ^ε ^γ 1181.4, 245.3, 1483.3 ^α 5.524 ω, 5.442, 5.361 ^γ 83 (ω), 106 E 3.98	At211 9/- 7.21 h ^ε γ 687.0 ω α 5.868, γ 669.6 ω, Ε.786 210.987481		At213 9/- 0.12 μs α 9.08 212.99292	9- At214 1- 0.76 μs 0.56 μs α 8.78, α 8.819, 213.99636
Po206 8.8 d γ 1032.3, 511.3, 286.4, 807.4, α 5.223 E 1.85	$\begin{array}{c} 19/-\textbf{Po207}5/-\\ \textbf{2.8 s}\\ \text{IT 268.1}\\ \gamma 814.5D,\\ 300.5D\\ 300.5D\\ 911.8,\\ \alpha 5.115 \omega\\ \text{E 2.91} \end{array}$	Po208 2.898 a α 5.115,··· ^ε ω γ 291.8 νω, 570.1, 601.5,··· 207.981231	Po209 1/- 102 a α 4.880, γ 260.5 ω, 262.8 ε γ 896.1 ω 208.982416	Po210 RaF 138.38 d α 5.3044 γ 803.1μω σ _γ (.5 mb+ 0.03) σ _ℓ < 2 mb 209.982857	(25/+) Po211 9/+ 25.2 s ^α 7.27, 8.88,··· 7 569.2D, 1063.1D, 17 ω 210.986637	(18 +) Po212 45 s α 11.65, γ 2614.4, 583.0 IT ~36 211.988852	Po213 9/+ 3.8 μs α 8.376, γ 778.8 ω 212.992843
Bi205 9/- 15.31 d ε β ⁺ .98 ω γ 1764.3, 703.5, 987.6D, E 2.71	Bi206 6+ 6.243 d ε β+.98 νω γ 803.1, 881.0, 516.2, E 3.76	Bi207 9/- 32 a ^ε β ⁺ ω γ 569.7, 1063.7D, E 2.398	Bi208 (5/+ 3.68E5 γ 2614.4 Ε 2.879	Bi209 9/- 100 9/- σ_{γ} (10 mb+24 mb), 0.19 $\overline{\sigma}_{\alpha} < 3 \mu b$ 208.980383	9 - Bi2 10 1 3.0E6 a A.946, S.01 d A.946, α 4.946, 5.01 d A.946, A.946, γ 266.2,, 4.687 305 rw, σ.0.2, 0.2, E 1.162 A.946,	Bi211 9/- AcC 2.14 m α 6.623, 6.279 γ 351.1 β ⁻ ω 210.98726	$\begin{array}{c c} (15-) \textbf{Bi212} & 1 (-) \\ \hline \textbf{7 m} & \textbf{FhC} \\ \hline \beta^{-} & & 1.009 \text{ h} \\ \hline \beta^{-} & & 25.0 \text{ m} \\ a & 6.34, \\ \hline \beta^{-} & & a, 6.051, \\ \hline \beta^{-} & & a, 6.051, \\ \hline \beta^{-} & & E & 2.254 \\ \hline (a) & 211.991272 \end{array}$
9- Pb204 1.12 h 1.12 h 1.14 1.4 1.7 9- Pb204 1.4 1.4 1.4 1.7 9- Pb204 1.4 1.4 1.4 1.4 1.4 1.4 1.4 2.0 203.973029	Pb205 5/- 1.5E7 a ε πογ σγ 4.5 Ε 0.051	Pb206 24.1 RaG σγ .027, .12 205.974449	$\begin{array}{c} 13/ + \mathbf{Pb207} & 1/-\\ \mathbf{0.80 s} & 22.1 \\ 1T & 1063.7 \\ \gamma & 569.7 \\ \sigma_{\gamma} & .70, \ .38 \\ 206.975881 \end{array}$	Pb208 ThD 52.4 σ _γ 0.49 mb, 2.0 mb σ _α 8 mb 207.976636 207.976636	Pb209 9/+ 3.25 h β ⁻ .645 no γ E .644	Pb210 RaD 22.3 a β ⁻ .017,.061 γ γ 46.5, e ⁻ α 3.72 νω σγ 0.5 E.0635	Pb211 9/+ <u>AcB</u> 36.1 m β ⁻ 1.38, γ 404.9, 831.9, 427.0, E 1.37
TI203 1/+ 29.524 σ_{γ} 11.4, 41 σ_{α} < .3 mb 202.972329	TI204 2- 3.78 a $β^-$,7634 no γ $ε^{\delta}$ $β_{\gamma}$ 22, 9E1 E7637 E+.347	TI205 70.476 1/+ σ _γ 0.10, 0.7 204.974412	(12) TI206 0- 3.14 m RaF 1T 1022 564 γ 687, 453, 217, 266.2, E 1.534	$\begin{array}{c} 11/- \text{TI207} & 1/+\\ \textbf{1.3 s} \\ \textbf{IT 997.1,} \\ \gamma & 351.0 \\ \gamma & 351.0 \\ \textbf{E} & 1.44, \\ \dots \\ \gamma & 897.2\omega, \\ \textbf{E} & 1.42 \end{array}$	TI208 5 (+) ThC ²⁰ 3.053 m β ⁻ 1.796, 1.28, 1.52, γ 2614.5, 583.2, 510.7, Ε 5.001	TI209 (1/+) 2.16 m β ^{-1.8,} γ 1567.0, 465.1, 117.2, E 3.98	TI210 (5 +) RaC" 1.30 m $β^-$ 1.9, 1.3, 2.3, γ 799.7, 298, (n) E 5.49
122		124		126		128	

r-process needed to explain Th , U

r-process path

FIG. 1.—Neutron capture paths for the s-process and the r-process. The r-process was computed for initial conditions of $T_9 = 1.8$ and $n_n = 10^{28}$ (Schramm and Norman 1976).

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral LIGO, PRL **119** (2017) 161101

FIG. 1. Time-frequency representations [65] of data containing the gravitational-wave event GW170817, observed by the LIGO-Hanford (top), LIGO-Livingston (middle), and Virgo (bottom) detectors. Times are shown relative to August 17, 2017 12:41:04

Evidence for neutron-star mergers as a possible site for the r-process

Orange curves are rich in lanthanides (indicative of r-process)

Photon spectra observed from GW170817 and GRB170817 sources

Pian *et al.* Nature **551** (2017) 67

Discovery of U in an extremely metal-poor star !

CS 31082-001, [Fe/H] = -2.9 (Cayrel et al. 2001)

good news: new cosmochronometer U-Th (with, e.g., Th-Eu)

bad news: "non-universality" up to Th and U

Wanajo et al

U-Th cosmochronology

age of CS 31082-001 hard lower limit on the age of the universe

 $t^{*}(U/Th) = 14.1G \, yr$

This star may have formed too early for neutron-star mergers to explain rprocess abundances. Thus, there may be more than one r-process site. **Source of stellar energies**

Nuclear reactions

Origin of chemical elements