

Low lying collective phenomena in N \sim 90 nuclei

University of Zululand Siyabonga Majola

UniZulu 2019

Background and motivation - Bohr Approach

Background and motivation - Early success of the Bohr Approach

Early success of the Bohr in the Rare earth Region

- 0+ bands do not ALL have the characteristics predicted for β-bands

Characterization of the β vibration and 0^+_2 states in deformed nuclei

P E Garrett

Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

Received 26 October 2000, in final form 7 November 2000

Abstract

A summary of the experimental properties of the first excited 0⁺ states in deformed rare-earth nuclei is presented. By appealing to the original definition of a β vibration laid down in the Bohr–Mottelson picture, it is re-emphasized that most of the 0⁺₂ states are not β vibrations. A consideration of all available data, especially that from transfer reactions, and of microscopic calculations of 0⁺ states underscores the need to consider the role of pairing in the description, and labelling, of these states.

Background and motivation - Shape Coexistence

β

Background and motivation - Pairing

- Further confusion caused by pairing in the N=90, A \approx 160
 - quadrupole pairing
- Give rise to 0⁺ ground states in even-even

Monopole term

Background and motivation - Pairing

- Further confusion caused by pairing in the N=90, A \approx 160
 - quadrupole pairing
- Give rise to 0⁺ ground states in even-even

Background and motivation

Background and motivation

• Three modes of excitation, which could lead to a formation of a first-excited $K^n = 0^+$ bands.

 Are the first excited zero plus states β, shape co-existence or Quadrupole pairing bands (Second vacuum bands)??

- Quadrupole pairing Hypothesis test

• To get a deeper insight, this study looks at the spectroscopy of ¹⁵⁶Dy and ¹⁵⁷Dy. The main objective is to observe the coupling of the $h_{11/2}$ [505]11/2neutron orbital in ¹⁵⁷Dy, to the first-excited $K^n = 0^+$ and $K^n = 2^+$ rotational bands of ¹⁵⁶Dy.

Hypothesis test

• if the first-excited $K^n = 0^+$ state band is comprised of essentially an $h_{11/2}$ pair of neutrons as called for by the quadrupole pairing hypothesis, then the band formed by the coupling of the $h_{11/2}$ neutron orbital to the first-excited $K^n = 0^+$ state will be absent or Pauli-blocked in ¹⁵⁷Dy, thus providing a yes or no test of the hypothesis.

Experimental Details

¹⁵⁵Gd (α,2n)¹⁵⁷Dy ; 25 MeV ~(2-3 days)

Experimental Details

¹⁵⁵Gd (α,2n)¹⁵⁷Dy ; 25 MeV ~(2-3 days)

JUROGAM II ARRAY

Collaborators

Department of Physics University of Jyväskylä, Finland

Previous in-beam works Hayakawa et al, Eur, Phys. J. A 15, 299-302 (2002)

Eur. Phys. J. A **15**, 299–302 (2002) DOI 10.1140/epja/i2002-10082-0

THE EUROPEAN PHYSICAL JOURNAL A

Short Note Rotational alignment of the $h_{11/2}$ band in ¹⁵⁷Dy

T. Hayakawa^{1,a}, Y. Toh¹, M. Oshima¹, M. Matsuda¹, Y. Hatsukawa¹, J. Katakura¹, H. Iimura¹, T. Shizuma¹, S. Mitarai², M. Sugawara³, H. Kusakari⁴, and Y.H. Zhang⁵

Results & Discussion - New additions in ¹⁵⁷Dy

Results: New additions in ¹⁵⁷Dy

PHYSICAL REVIEW C 00, 004300 (2019)

Spectroscopy of low-spin states in ¹⁵⁷Dy: Search for evidence of enhanced octupole correlations

S. N. T. Majola^(b),^{1,2,3,*} R. A. Bark,³ L. Bianco,¹² T. D. Bucher,³ S. P. Bvumbi,² D. M. Cullen,^{4,7} P. E. Garrett,¹²
P. T. Greenlees,⁴ D. Hartley,⁸ J. Hirvonen,⁴ U. Jakobsson,⁴ P. M. Jones,³ R. Julin,⁴ S. Juutinen,⁴ S. Ketelhut,⁴ B. V. Kheswa,^{2,3}
A. Korichi,¹³ E. A. Lawrie,^{3,5} P. L. Masiteng,² B. Maqabuka,³ L. Meletshe,^{1,3} A. Minkova,¹⁴ J. Ndayishimye,³ P. Nieminen,⁴
R. Newman,³ B. M. Nyakó,⁹ S. S. Ntshangase,¹ P. Peura,⁴ P. Rabkila,⁴ L. L. Riedinger,¹⁰ M. Riley,⁶ D. Roux,¹¹
P. Ruotsalainen,⁴ J. Saren,⁴ J. F. Sharpey-Schafer,⁵ C. Schole,⁴ O. Shirinda,³ A. Sithole,^{1,5} J. Sorri,^{4,†}

Results: New additions in ¹⁵⁷Dy

Eur. Phys. J. A (2011) 47: 6 DOI 10.1140/epja/i2011-11006-7

THE EUROPEAN PHYSICAL JOURNAL A

Letter

Blocking of coupling to the 0^+_2 excitation in ^{154}Gd by the $[505]11/2^-$ neutron in ^{155}Gd

Results: New additions in ¹⁵⁷Dy

Conclusion

- First γ -bands in the odd-even Dy isotope has been observed
- The Tracking of [505]11/2 by its own γ-bands demonstrates the nature of γ-bands
- No sign of β-band

End of part 1

Systematics of β and γ bands in eveneven N \approx 90 nuclei

Background and motivation -Studied by iThemba LABS

This study ranges from Sm to Yb isotopes, with neutron numbers from N = 88-92

z	152Yb	153Yb	154Yb	155Yb	156Yb	157УЪ	158Yb	159Yb	160УЪ	161Yb	162Yb	163УЪ	164Yb	165Yb	166Yb	167Yb	168Yb
	151Tm	152Tm	153Tm	154Tm	155Tm	156Tm	157Tm	158Tm	159Tm	160Tm	161Tm	162Tm	163Tm	164Tm	165Tm	166Tm	167Tm
68	150Er	151Er	152Er	153Er	154Er	155Er	156Er	157Er	158Er	159Er	160Er	161Er	162Er	163Er	164Er	165Er	166Er
	149Ho	150Ho	151Ho	152Ho	153Ho	154Ho	155Ho	156Ho	157Ho	158Ho	159Ho	160Ho	161Ho	162Ho	163Ho	164Ho	165Ho
66	148Dy	149Dy	150Dy	151Dy	152Dy	153Dy	154Dy	155Dy	156Dy	157Dy	158Dy	159Dy	160Dy	161Dy	162Dy	163Dy	164Dy
	147Tb	148ТЪ	149Tb	150ТЪ	151Tb	152Tb	153Tb	154Tb	155Tb	156Tb	157Tb	158Tb	159Tb	160Tb	161Tb	162Tb	163Tb
64	146Gd	147Gd	148Gd	149Gd	150Gd	151Gd	152Gd	153Gd	154Gd	155Gd	156Gd	157Gd	158Gd	159Gd	160Gd	161Gd	162Gd
	145Eu	146Eu	147Eu	148Eu	149Eu	150Eu	151Eu	152Eu	153Eu	154Eu	155Eu	156Eu	157Eu	158Eu	159Eu	160Eu	161Eu
62	144Sm	145Sm	146Sm	147Sm	148Sm	149Sm	150Sm	151Sm	152Sm	1538m	154Sm	155Sm	156Sm	157Sm	158Sm	159Sm	160Sm
	82		84		86		88		90		92		94		96		N

15 experiments performed to study 12 nuclei

_							
	Nucleus (N)	Reaction(s)	Beam energy (MeV)	Target thickness	Statistics events	Spectrometer(s)	
	¹⁵⁰ Sm (88)	136Xe(¹⁸ O,4n), 148Nd(α,2n)	75, 25	~ 5 mg/cm2 5 mg/cm2	0.5 × 10 ⁹ γγ 2 × 10 ¹⁰ γγγ	Afrodite, Jurogam II	
	₁₅₂ Gd (88)	¹⁵² Sm (α,4n)	45	5mg/cm ²	0.5 × 10 ⁹ γγ	Afrodite	
	₁₅₄ Dy (88)	¹⁵⁵ Gd(α,4n)	37.5	3.2 mg/cm ²	0.4 × 10 ⁹ γγ	Afrodite	
	¹⁵⁶ Er (88)	¹⁴⁷ Sm(¹² C,3n)	65	6 mg/cm ²	1.4 × 10 ⁹ γγ	Afrodite	
	¹⁵⁸ Yb (88)	¹⁴⁴ Sm(¹⁸ O,4n)	78	3 mg/cm ²	2.0 × 10 ⁹ γγ	Afrodite	
	¹⁵⁴ Gd (90)	¹⁵² Sm(α,2n)	25	4 mg/cm ²	0.5 × 10 ⁹ γγ	Afrodite	
	¹⁵⁶ Dy (90)	¹⁵⁵ Gd(α,3n), ¹⁴⁸ Nd(¹² C,4n)	25, 65	0.98 mg/cm2 1.53 mg/cm ²	1.4x10 ⁹ үү, 2.0 × 10 ⁹ үүү	Jurogam II, Gammasphere	
	¹⁵⁸ Er (90)	¹⁵⁰ Sm(12C,4n)	65	1 mg/cm ²	4.2 × 10 ⁸ γγ	Afrodite	
	¹⁶⁰ Yb (90)	¹⁴⁷ Sm(16O,3n)	73	4 mg/cm ²	2.0 × 10 ⁹ γγ	Afrodite	
	¹⁵⁸ Dy (92)	¹⁵⁶ Gd(α,2n), ¹⁵⁵ Gd(α,n)	27, 25	11 mg/cm ² , 0.98 mg/cm ²	1.1 × 10 ⁹ γγ, 1.4x10 ⁹ γγ	Afrodite, Jurogam II	
	¹⁶⁰ Er (92)	¹⁵² Sm(12C,4n)	64	5 mg/cm ²	2.7 × 10 ⁹ γγ	Afrodite	

¹⁴⁸Nd(¹²C,4n)¹⁵⁶Dy, Gammasphere

Siyabonga Majola, Darryl Hartley, Lee Riedinger

S. Majola, D. Hartley, L. Riedinger, et al PRC 91 034330 (2015) D. Hartley, L. Riedinger, S. Majola, et al PRC 95 014321 (2017) ¹⁵⁴Gd JF Sharpey—Shafer et al

 $^{152}Sm(\alpha, 2n)^{154}Gd$

¹⁴⁷Sm(¹⁶O,3n)¹⁶⁰Yb, AFRO

odd γ

¹⁶⁰Yb (N=90) **Rob Bark** γ ground even γ 3848 3870 14^{+} β 550 0+2 3319 12+ 478 528 2841 10^{+}

R. A. Bark, J. F. Sharpey-Schafer, et al., Phys. Rev. Lett. 104, 022501 (2010).

¹⁵⁶Gd(α ,2n) ¹⁵⁸Dy, AFRODITE

¹⁵⁸Dy (N=92)

Maciek Stankiewicz

S. Majola, et al., PRC, to be published

Beta & Gamma Bands identified to ~12h for the first time in many cases

Also:

 ¹⁵⁶Er JM Rees et al, PRC83, 044314(11) ES Paul et al, PRC79 044324(09)
 ¹⁶⁰Er K Dushing et al. PRC73 014317(06) J Ollier et al, PRC, 064322 (09)
 ¹⁵⁸Dy T Hayakwaw PRC 68, 067303(03)
 ¹⁵²Sm P Garrett et al PRL 103, 062501(09)

Relativistic Mean Field "Density Functionals" Coupled to the:

Bohr Hamiltonian

Zhipan Li Jie Meng Chunyan Song Jiangjing Yao Shuangquan Zhang Zhi Shi Bangyan Song Important point:

All parameters fixed. Nothing fitted to positive-parity bands

Up Next: Calculated quantities compared with observables

Beta & Gamma Bands identified to ~12h for the first time in many cases

The determination of a comprehensive set of level energies and branching ratios between bands allows their electromagnetic properties to be compared to nuclear models. To come to an understanding of the properties of these bands, the data obtained in this work are explained using a relativistic mean-field combined with the Bohr Hamiltonian.

Calculated Energies (lines) compared to experiment (points)

ground band
 β band
 γ band

Er

0

0

2

- Predicts the order very well -
- Predicts signature splitting very well -
 - Ground parallel to γ bands

Spin

8

10 12 14

6

4

- Predicts the order very well
- Predicts signature splitting very well
 - Ground parallel to γ bands

- predicts different moments of inertia for β and γ bands

N = 90

- Predicts the order very well
- Ground parallel to γ bands

¹⁶⁰Yb

¹⁵⁸Er

and γ bands

N = 90

- Predicts the order very well
- Again! ground parallel to γ bands

Spin

g

10 12 14

- N= 90 covered extremely well by the theory

Bandhead energies: 0₂⁺ states

Bandhead energies: 2₂⁺ states

E(22⁺) vs Z

- Trends are generally good

Branching Ratios β-band

Branching Ratios β-band

Branching Ratios β-band

Branching Ratios γ -band

Branching Ratios γ -band

Staggering

Staggering

Second minima in Er, Yb isotopes (N=88)

Second minima in Er, Yb isotopes (N=90)

12

8

4

 $\beta_2 \sim 0.45$ and $\gamma \sim 10^\circ$ in Er, Yb isotopes

Are $|0_2^+>$ states, Triaxially super deformed bands??

In order to produce a complete and definitive microscopic picture of the socalled β and γ bands, we have carried out an extensive systematic study of even-even nuclei in the 160 mass region.

Based on this data:

"From Sm to Dy, the $|0_2^+>$ " are well described as " β -bands"

Maybe not "harmonic vibrations" but are essentially well described as solutions of the Bohr Hamiltonian with a realistic potential

Second minima for Er and Yb isotopes is located at $\sim \beta_2 \sim 0.45$ and $\gamma \sim 10^{\circ}$.

This may imply that the 0₂⁺ bands in Er and Yb isotopes are Triaxially super deformed bands

Energy staggering and PES plots show that the almost all the N=88 isotones from Sm to Yb are γ soft.

EXPERIMENTALISTS

RELATIVISTIC MEAN FIELDERS & COLLECTIVE MODELLERS:

Ntshangase R. Bark L. Mdletshe A. Sithole Bucher T. Dinoko E. Lawrie J. Sharpey-Schafer J. Lawrie G. Zimba **AFRODITE CREW** JYVASKYLA GAMMASPHERE...

iThemba LABS University of Zululand University of the Western Cape University of Cape Town Stellenbosch University University of Johannesburg Zhipan Li Zhi Shi Jie Meng Bangyan Song Chunyan Song Jiangjing Yao Shuangquan Zhang

University of South West China Peking University Beihang University

.

Moment of Inertia: Inglis-Belyaev formula

$$\mathcal{I}_{k} = \sum_{i,j} \frac{(u_{i}v_{j} - v_{i}u_{j})^{2}}{E_{i} + E_{j}} |\langle i|\hat{J}_{k}|j\rangle|^{2} \quad k = 1, 2, 3,$$

Mass Parameters calculated in Cranking approximation

$$B_{\mu\nu}(q_0, q_2) = \frac{\hbar^2}{2} \left[\mathcal{M}_{(1)}^{-1} \mathcal{M}_{(3)} \mathcal{M}_{(1)}^{-1} \right]_{\mu\nu}$$

$$\mathcal{M}_{(n),\mu\nu}(q_0, q_2) = \sum_{i,j} \frac{\langle i | \hat{Q}_{2\mu} | j \rangle \langle j | \hat{Q}_{2\nu} | i \rangle}{(E_i + E_j)^n} (u_i v_j + v_i u_j)^2$$

Improved by using Thouless-Valatin moments-of-inertia Z.P. Li. et al PRC 86, 034334 (2012)

Re-cast Bohr Hamiltonian

$$\hat{H} = \hat{T}_{\rm vib} + \hat{T}_{\rm rot} + V_{\rm coll}$$

$$\hat{T}_{\text{vib}} = -\frac{\hbar^2}{2\sqrt{wr}} \left\{ \frac{1}{\beta^4} \left[\frac{\partial}{\partial\beta} \sqrt{\frac{r}{w}} \beta^4 B_{\gamma\gamma} \frac{\partial}{\partial\beta} \right] \right\}$$

$$-\frac{\partial}{\partial\beta}\sqrt{\frac{r}{w}}\beta^{3}B_{\beta\gamma}\frac{\partial}{\partial\gamma}\right] + \frac{1}{\beta\sin3\gamma}\left[-\frac{\partial}{\partial\gamma}\right]$$
$$\times \sqrt{\frac{r}{w}}\sin3\gamma B_{\beta\gamma}\frac{\partial}{\partial\beta} + \frac{1}{\beta}\frac{\partial}{\partial\gamma}\sqrt{\frac{r}{w}}\sin3\gamma B_{\beta\beta}\frac{\partial}{\partial\gamma}\right]$$

$$\hat{T}_{\rm rot} = \frac{1}{2} \sum_{k=1}^{3} \frac{\hat{J}_k^2}{\mathcal{I}_k}$$

Need to determine I's, B's

T. Niksic et al PRC 79, 034303 (2009) Z.P. Li et al., PRC 79, 054301 (2009)

V_{coll} from Relativistic Mean Field

Parameters of PC-F1 functional And pairing strengths adjusted to ground observables of spherical nuclei (binding energies, pairing gaps, charge radii etc)

> T. Niksic et al PRC 79, 034303 (2009) Z.P. Li et al., PRC 79, 054301 (2009)