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Some	major	goals	of	nuclear	structure	study	

•  We	strive	to	understand	nuclear	structure:	
							It	is	a	quantum	mechanical	many-body	problem	
								It	appears	to	be	very	complex	
	
•  We	need	to	idenBfy	simple	pa)erns	of	behavior:	
							There	is	an	extreme	independent-parBcle	view:	
									the	nuclear	shell	model	
	
							We	start	by	interpreBng	paYerns	in	terms	of	
										independent	parBcles	and	their	interacBons	
	
								We	encounter	correlaBons,	e.g.,	“pairing”:	this		
										behavior	is	manifestly	not	“independent”	parBcle.	



Singly	closed	shell	nuclei	

R&W	Fig.	1.2	



Shell	model:	an	energy	ordering,	and	a	basis		

R&W	Figs.	1.14,	1.17	

H  = p2/2m  +  V(r)  + C l	�	s 

			C < 0  

Harmonic oscillator, V(r) = ½ m ω2r2   
																		

																Woods-Saxon, V(r) ~ -  ρ(r) 
 
Infinite square well, V(r) = const., r < R  
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1 Elements of nuclear structure

Figure 1.14: Single-particle shell-model poten-
tials: an infinite square well potential (dashed
line); a Woods-Saxon potential (dot-dashed line);
and a harmonic oscillator potential (solid line).

V(r)

r

–V0

R

zero at large radii. They simply fall oÆ more rapidly in the oscillator potential than
they would in a more realistic potential. Thus, a harmonic oscillator potential is
not as realistic as a Woods-Saxon potential. But, with a little adjustment, it gives
similar results. The reason for its popularity is that its wave functions and energy
levels have analytical expressions. We shall also find, in subsequent chapters, that
the harmonic oscillator shell model has many symmetries and provides a useful basis
for the expression of collective models with a microscopic interpretation.

The spatial wave functions for a single particle in a spherically symmetric po-
tential can be expressed in spherical polar coordinates in the form

√nlm(r, µ,') = Rnl(r)Ylm(µ,'), (1.15)

where n is a radial quantum number, Ylm is a spherical harmonic, and l,m are
orbital angular momentum quantum numbers. These quantum numbers take val-
ues in the ranges n = 1, 2, 3, . . ., l = 0, 1, 2, . . . and m = °l, . . . ,+l, respectively.
Intrinsic spin degrees of freedom are suppressed for the moment but will be in-
cluded shortly. Because a spherically symmetric potential is rotationally invariant,
the single-particle energies, "nl, depend on n and l but not on m. The parity of a
single-particle wave function √nlm is (°1)l; this follows from the symmetry of the
spherical harmonics, Ylm(µ,'), under inversion.

For a spherical harmonic oscillator, cf. Section 5.8, the energy levels are given
by

"nl = (N + 3/2)~!, (1.16)

where N (not to be confused with the neutron number) is given by

N = 2(n° 1) + l. (1.17)

These energies are shown in Figure 1.15. For each value of l, the quantum number
m takes 2l+1 values. With two spin states for a nucleon (spin up and spin down),
one finds that the multiplicity of states at each level is equal to (N + 1)(N + 2).
Because of the Pauli exclusion principle, no two identical nucleons in a nucleus can
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Removal	of	spin-orbit	spli;ng	to	reveal	non-degeneracy	of	
subshell	energies	and	l	dependence		

May 31, 2017 10:16 Emergent Phenomena in Atomic Nuclei from. . . 9in x 6in b2792-ch01 page 9

Nuclear Collectivity 9

(a) (b)

Fig. 1. (a) The low-energy states of 207Pb with the effect of removing the spin-
orbit coupling energy using an empirical strength of 0.5 MeV. This reveals the
non-degeneracy of the different angular momentum eigenstates in the central
potential describing the independent-particle mean field. The data are taken from
ENSDF. (b) The low-energy states of 147Gd and 207Pb, plotting the energies of
207Pb inverted with respect to excitation in recognition of their hole character.
Note the enormous energy shift of the 1h9/2 state relative to the other states. This
is due to the filling of the 1h11/2 proton subshell between 147Gd and 207Pb and
a two-body proton–neutron monopole residual interaction. The data are taken
from ENSDF.

self-consistency condition between the oscillator frequency possessed
by a given nucleus and the nuclear mean-square charge radius. This is
often termed the “volume-conservation constraint”. In simple terms,
nucleons in an unconstrained oscillator potential would minimize
their energy by organization into oscillator states with very low
oscillator frequencies. This self consistency is the reason that one can
recognize, e.g., in the excitation spectra of 133Sn and 209Pb [4]. the
emergence of two manifestations of the same underlying many-body
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Independent-par=cle	poten=als	are	only	part	of	the	
physics,	even	adjacent	to	closed	shells		
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N	=	82	singly	closed	shell	nuclei:	shell	model		
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1 Elements of nuclear structure
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Figure 1.2: Chart of the nuclides (ca. 2005). The black squares denote the nuclei found in nature. The present
extent of nuclei, for which at least one characteristic has been measured, are enclosed by the “stepped” border.
The line marked Bn = 0 approximates the neutron drip line. The line marked Bp = 0 approximates the
proton drip line. Outside of these borders, neutrons and protons are lost so rapidly from nuclei that the
nuclei cannot be observed. The line marked Z2/A = 46 indicates an approximate limit to nuclear stability
with respect to spontaneous fission. The magic numbers 2, 8, 20, 28, 50, 82, and 126 (cf. Section 1.3) also
are indicated.

before they were observed. There have been many experimental surprises. In this
respect, nuclear physics is in “good company” with condensed matter physics. There
are a number of parallels. For example, many nuclei and condensed matter systems
exhibit superfluidity. In fact, it is sensible to regard nuclei as examples of condensed
matter.

The future of nuclear physics, as also of condensed matter physics, depends in
part on producing new condensates. For nuclei this means new combinations of N
and Z. A consideration of Figure 1.2 reveals that we have studied only about 30%
of the possibilities. To study the remaining 70% of the possibilities, which are very
unstable, is one of the future challenges of nuclear physics.
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Figure	4.3:	Systema2cs	of	low-lying	states	in	the	odd-mass	N	=	82	isotones		
for	63	≤	Z	≤	73.	The	isotones	with	Z	≥	75	are	not	yet	produced	in	sufficient		
yields	to	be	accessible	for	experimental	study.	See	the	cap2on	to	Fig.	4.2		
and	the	text	for	other	details.	

N	=	82:	proton	single-quasipar=cle	states,	Z	>	62	
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N	=	82:	proton	“seniority”	structure,	Z	>	65	
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Simple,	persistent	structures	in	complex	systems	demand	simple	explanaBons!	
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Handling	many-fermion	configura=ons:	
the	“m-scheme”	and	allowed	total	spin	couplings	for	j2	

The	3-	states	in134Te	–	144Sm,	shown	in	Figure	4.6,	are	examples	of	weak	“collecVve”	modes		
termed	“octupole	vibraVons”.	They	are	not	important	to	the	focus	of	the	present	discussion.	
	

The	structure	of	146Gd	is	complex	because	broken	pair	configuraVons	involving,	e.g.,	(1g7/2)
2,	J	=	6,		

(1g7/22d5/2),	J	=	6	and	(1h11/2)
2,	J	=	6	all	occur	at	relaVvely	low	energy,	cf.	Figures	4.3	and	4.6.	They	

are	not	important	to	the	focus	of	the	present	discussion.	
	

The	“m	scheme”	
	
Example:	

2.2. THE GENERAL COUPLING OF TWO PARTICLES WITH SPIN OR ANGULAR MOMENTUM 49

m1 m2 M

+1 +1 +2
+1 0 +1

+1 -1 0

0 0 0

0 -1 -1

-1 -1 -2

J=2, 0Ex. j1=1, j2=1

Symmetrization, e.g., |m1,m2i = 1p
2
{|+1,0i+ |0,+1i} excludes (m1,m2) = (0,+1), (�1,0),

and (�1,+1).

Similarly, for two identical fermions:

m1 m2 M

+3/2 +1/2 +2
+3/2 -1/2 +1

+3/2 -3/2 0

+1/2 -1/2 0

+1/2 -3/2 -1

-1/2 -3/2 -2

J=2, 0Ex. j1=3/2, j2=3/2

(the j1 and j2 states are presumed identical in every respect except for m1 and m2, i.e.,
all other quantum numbers equal). The Pauli principle excludes (m1,m2) = (+3/2,+3/2),
(+1/2,+1/2), etc.; antisymmetrisation excludes (m1,m2) = (+1/2,+3/2), etc.

The m-scheme can be used for any number of particles to ascertain the allowed J values,
e.g., for three identical fermions:

Figure	4.10:	the	m	scheme	for	two	idenVcal	fermions	in	a	(j	=	3/2)2	configuraVon.	The	following		
rules	must	be	obeyed	in	making	the	tabulaVon:	
	(i).	The	m1	and	m2	values	must	be	different	(Pauli	exclusion	principle);	

	(ii).	m1	=		+3/2,	m2	=	+1/2,	for	example,	vetoes	m1	=	+1/2,	m2	=	+3/2	because	the	fermions	are	
idenVcal.	Formally,	this	state	must	be	expressed	as	a	linear	combinaVon	of|+3/2,	+1/2>	and		

|+1/2,	+3/2>.	Note	that	J	=	1,	3	do	not	occur.	Also	note	that	the	M	=	0	mulVplicity	of	two	must	be	
taken	in	linear	combinaVons	of|+3/2,	-3/2>	and	|+1/2,	-1/2>	in	a	rigorous	formulaVon	(e.g.,		
symmetric	for	J	=	2	and	anVsymmetric	for	J	=	0;	but	in	the	details,	a	treatment	of	the	total	wave		
funcVon	and	its	anVsymmetrizaVon	must	be	discussed—not	needed	for	present	purposes).		

p.	4.10	

Pauli	principle:		
1).	two	idenBcal	fermions	cannot	have	all	quantum	numbers	the	same	
2).	fermionic	states	must	be	anB-symmetric,	viz.	|m1m2>		-	|m2m1>		

No	J	=	1,	3	



J.P.	Schiffer	and	W.W.	True,	Rev	Mod	Phys	48	191	(1976);	
W.W.	Daehnick,	Phys	Repts	96	317	(1983)	

			j2	pair	coupled	to	resultant	J,	diagonal	energies:	
											short-range	force,	overlap	of	wave	func=ons		
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Mul=-j	J	=	0	pair	states:		
pairing—diagonal	and	off-diagonal	energies	

Simplest	pairing	force	model:	one	pair	

incoherent	(minus	sign)	

coherent	(plus	sign)	

pairing	“energy	gap”	



The	anatomy	of	pairing	in	finite	many-body	quantum	
systems:	effect	on	separaBon	energies	

A.	Two-proton	separaBon	energies	
	in	a	shell	model	picture	

A.	

B.	
B.	Two-proton	separaBon	energies	
	in	a	shell	model	+	pairing	model	picture	

|gs;	n	pairs>	=	{|j12,	J=0>	+	|j22,	J=0>	+	…}n		
	
--”Cooper”	pairs	



	
One-proton	separaBon	energies,	Sp:	

N	=	82	
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6.9 Implications and applications of BCS theory

One-proton separation energies are shown for the N = 82 isotones in Figure
6.21 and one-neutron separation energies are shown for the Z = 82 (Pb) isotopes
in Figure 6.22. Observe the very diÆerent slopes of of the dashed lines in the two

135 140 145 150

N=82  isotones
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Figure 6.21: One-proton separation energies, Sp, for the N = 82
isotones. All lines are drawn to guide the eye. All uncertainties
but one are smaller than the circles around the data points. Note
that the extreme right-hand data point (for 153Lu) corresponds to
this nucleus being unbound with respect to one-proton emission.
(Data taken from Audi G., Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)
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Figure 6.22: One-neutron separation ener-
gies, Sn, for the Z = 82 (Pb) isotopes. All
lines are drawn to guide the eye. All uncer-
tainties are smaller than the circles around
the data points. (Data taken from Audi
G., Wapstra A.H. and Thibault C. (2003),
Nucl. Phys. A729, 337.)

figures which indicate the diÆerent strengths of the eÆective pairing interaction at
N = 82 and Z = 82 (cf. Equation (6.30)). Note, also the discontinuity that occurs
between 207Pb and 209Pb which is attributed to the “rapid” filling of the 3p1/2
subshell (cf. Figure 6.4 for the Sn isotopes).

6.9.3 The energy gap and collective two quasi-particle states

An important result of BCS theory is the prediction of an energy gap between the
ground state of an even nucleus and its first excited state. In the BCS approxi-
mation, this energy gap is the energy required to create two quasi-particles, 2Ej ,

483

Z	=	64	

R&W	Fig.	6.21		

Z	=	58	

	ß				1g7/2					à	

ß2d5/2à	

Pairing	correlaBons:	
		odd-even	staggering;	
		no	disconBnuiBes	at	subshells	

|odd	gs>		=		|ji>		x	|gs;	n	pairs>		
	
ji	“blocks”	state	i	
--not	accessible	to	J	=	0	pairs,	
reduces	correlaBon	energy	


