Singly closed shell nuclei: Spherical nuclei and senioritydominated coupling I. Sketch of the shell model; basic signatures of seniority

John L. Wood, School of Physics, Georgia Institute of Technology

Reference: David J. Rowe and John L. Wood, Fundamentals of Nuclear Models, Foundational Models, Ch. 6 (World Scientific, 2010)—"R&W"

Some major goals of nuclear structure study

- We strive to understand nuclear structure: It is a quantum mechanical many-body problem It appears to be very complex
- We need to identify *simple patterns* of behavior: There is an extreme independent-particle view: the nuclear shell model

We start by interpreting patterns in terms of independent particles and their interactions

We encounter correlations, e.g., "pairing": this behavior is manifestly not "independent" particle.

Singly closed shell nuclei

R&W Fig. 1.2

Shell model: an *energy ordering*, and a *basis*

$$H = p^2/2m + V(r) + C l \cdot s$$

$$C < 0$$

Harmonic oscillator, $V(r) = \frac{1}{2} m \omega^2 r^2$

Woods-Saxon,
$$V(r) \sim -\rho(r)$$

Infinite square well,
$$V(r) = const., r < R$$

Removal of spin-orbit splitting to reveal non-degeneracy of subshell energies and *l* dependence

Independent-particle potentials are only part of the physics, even adjacent to closed shells

^{*}estimate from N = 83 systematics

N = 82 singly closed shell nuclei: shell model

E(keV)

N = 82: proton single-quasiparticle states, Z > 62

E(keV)

N = 82: proton "seniority" structure, Z > 65

Simple, persistent structures in complex systems demand simple explanations!

E(keV)

Handling many-fermion configurations:

the "m-scheme" and allowed total spin couplings for j²

Pauli principle:

1). two identical fermions cannot have all quantum numbers the same

2). fermionic states must be anti-symmetric, viz. $|m_1m_2> - |m_2m_1>$

Ex. j ₁ =3/2, j ₂ =3/2		No J = 1, 3	3 J=2, 0
m ₁	m ₂	М	
+3/2	+1/2	+2	←───
+3/2	-1/2	+1	←
+3/2	-3/2	0	←───
+1/2	-1/2	0	
+1/2	-3/2	-1	•
-1/2	-3/2	-2	

j² pair coupled to resultant J, diagonal energies:

short-range force, overlap of wave functions

 $j_1 = j_2 = j$, J = EVEN, identical nucleon pair

$$\cos \theta_{12} = \frac{J(J+1)}{2j(j+1)} - 1$$

semi-classical view of wave function overlap NOTE: anti-symmetrization weakens high-J interactions

J.P. Schiffer and W.W. True, Rev Mod Phys **48** 191 (1976); W.W. Daehnick, Phys Repts **96** 317 (1983)

Multi-j J = 0 pair states: pairing—diagonal and off-diagonal energies

Simplest pairing force model: one pair

The anatomy of pairing in finite many-body quantum systems: effect on separation energies

A. Two-proton separation energies in a shell model picture

B. Two-proton separation energies in a shell model + pairing model picture

 $|gs; n pairs> = {|j_1^2, J=0> + |j_2^2, J=0> + ...}^n$

--"Cooper" pairs

One-proton separation energies, S_p: N = 82

Pairing correlations: odd-even staggering; no discontinuities at subshells

 $|odd gs\rangle = |j_i\rangle \times |gs; n pairs\rangle$

j_i "blocks" state i
--not accessible to J = 0 pairs,
reduces correlation energy

R&W Fig. 6.21