Nuclear Forensics

Eric B. Norman Nuclear Engineering Dept. Univ. of California Berkeley, CA

Outline

Seaborg's Plutonium ?

Explosion Yield of the Trinity Device

Anti-neutrino Monitoring of Nuclear Reactors

Neutron Capture Cross Section of ⁸⁸Zr

Seaborg's Plutonium ?

Production of Plutonium Isotopes

The first sample of ²³⁹Pu containing 2.7micrograms of oxide was weighed on September 10, 1942, at the University of Chicago's Metallurgical Laboratory. It is shown here as a deposit on a platinum foil held by forceps.

(a) outside of sample box with labels

(b) head-on view showing plastic rod with sample attached

(c) side view showing sample attached to plastic rod.

Background subtracted spectrum observed from Sample S338. All of the labelled peaks are x-rays and gamma rays produced by the decay of ²³⁹Pu.

To determine the mass of ²³⁹Pu contained in S338, we:

- Measured the efficiency of our detector using calibrated sources of ⁵⁷Co, ¹³⁷Cs, and ²⁴¹Am. These sources provide x-ray and gamma-ray lines at 26, 32, 36, 59, 122, and 136 keV.
- 2. Gamma-rays emitted from the S338 sample had to pass through the 0.63-cm thick wall of the plastic box in which it is contained. In order to account for the attenuation this produced, we placed a 0.63-cm thick block of polyethylene between our sources and the detector.
- 3. We extracted the peak areas of the 38.7, 51.6, and 129.3-keV lines from the spectrum obtained from S338 and then determined the sample mass from each line. Results were averaged to establish the mass of ²³⁹Pu contained in sample S338 to be 2.0 \pm 0.3 µg.
- 4. Seaborg stated that the first weighed sample contained 2.77 μ g of PuO₂ with no uncertainty given. This would imply a ²³⁹Pu mass of 2.44 μ g.
- 5. Thus, the mass we determined is in reasonably good agreement with what Seaborg stated.

Gamma spectrum using the same detector from "modern" Pu.

Counts

In his reports, Seaborg states that 45 kg of uranium irradiated for 2 months with neutrons (produced by deuteron breakup) produced $200 \mu \text{g}$ of Pu.

From this one can infer a total neutron fluence

 $\Phi_n = 2x10^{15} \text{ neutrons/cm}^2$

Note: This is about the same fluence a uranium nucleus in a modern commercial power plant sees in a few seconds !

 \rightarrow expect N(²³⁹Pu) : N(²⁴⁰Pu) : N(²⁴¹Pu) = 1.00: 3x10⁻⁷ : 6x10⁻¹⁴

After 72 years, almost all of the ²⁴¹Pu would have decayed to ²⁴¹Am, producing less than 2μ Bq of activity(far too small for us to see)

Thus, our failure to observed ²⁴¹Am is consistent with S338 being Seaborg's plutonium.

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

A mallard correctly identified as a duck using the duck test

E. B. Norman, K. J. Thomas, K. E Telhami, Amer. Journ. Phys. 83 (2015) 843

Explosion Yield of the Trinity Device

Trinity: First Nuclear Weapon Explosion

Trinitite Analysis

4 samples of Trinitite obtained from Mineralogical Research Co. (San Jose, CA) 9 – 16 grams each

Gamma-ray spectrum observed with planar Ge detector

Low Energy Portion of Spectrum

Simple Minded Analysis

Use observed counting rates of 52- and 129-kev lines from ²³⁹Pu and 662-keV line from ¹³⁷Cs to determine yield of Trinity device

Assume same probability for Cs and Pu to become incorporated in Trinitite

Due to high volatility of Cs, this should lead us to underestimate the yield

Neglect fission yield from tamper (depleted uranium) Will also cause us to underestimate yield Interesting interplay of nuclear physics and chemistry involved in analysis

\rightarrow Our Measured Yields = 3.5 – 9.8 kT

Low, but correct order of magnitude from simple minded analysis

Actual yield = 21 kT

Anti-neutrino Monitoring of Nuclear Reactors

Nuclear reactors produce enormous numbers of anti-neutrinos which can be used to monitor reactor operations

 235 U + n \rightarrow fission \rightarrow

⁹²Rb + ¹⁴²Cs + 2n (only one example) ⁹²Rb → ⁹²Sr + e⁻ + $\overline{\nu}_{e}$

 $^{142}Cs \rightarrow ^{142}Ba + e^{-} + \overline{v}_{e}$

Mass distribution of fission products depends on the fissile material

U-235 Fission Yields

Pu-239 Neutron-induced Fission Yields

thermal fission of ²³⁵U

thermal fission of ²³⁹Pu

Beta-delayed gammas following fission observed through 0.75" Pb with plastic scintillator

Remote monitoring of nuclear reactors

Reactor anti-neutrinos

Composition of fuel changes with time: ²³⁵U is destroyed, ²³⁹Pu is produced

A. Bernstein *et al*. SONGS reactor

Inverse Beta Decay

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- High cross section: $\sigma_{IBD} \approx 9.30 \cdot 10^{-42} \left(\frac{E_v}{10 \, MeV}\right)^2 cm^2$
- Energy threshold: 1.8 MeV
- Coincident signal between positron and neutron, in space (few cm) and time (several µs)
- ⇒ Clear event signature

Hydrogen:	$E_{\gamma} \approx 2.2 \text{ MeV}$
Carbon:	$E_{\gamma} \approx 4.9 \text{MeV}$
Gadolinium:	E _γ ≈8MeV

M. Hofmann,

- L. Oberauer,
- S. Schonert

Observed neutrino counting rate before and after reactor turns on

Observed neutrino counting rate during two reactor fuel cycles

N S Bowden 2008 J. Phys.: Conf. Ser. 136 022008

The Surprisingly Large Neutron Capture Cross Section of ⁸⁸Zr

- Neutron-induced reactions are important for Stockpile Stewardship
 - radchem diagnostics: reaction networks involve many radioactive nuclei close to stability
 - fission-product burn up: key reactions far from stability influence resulting chain yields
- Nuclei heavier than iron are forged through neutron-capture reaction
 - s process: builds up elements along a path near stability over a timescale of thousands of years in asymptotic giant branch stars
 - r process: rapid neutron captures create very exotic nuclei in corecollapse supernova, neutron star mergers, or γ-ray bursts

Measure missing cross section in Zr reaction network:

- Stockpile stewardship
 - Understanding reactions on radiochemical detector materials used in nuclear weapons

Zr reaction network with cross section data:

Destruction routes for ⁸⁸Zr in a reactor

- ⁸⁸Zr(n,α)⁸⁵Sr
 - Will have to allow samples to decay to observe 514 keV ⁸⁵Sr
- ⁸⁸Zr(n,p)⁸⁸Y
 - $A(^{88}Y)_{meas} >> A(^{88}Y)_{decay}$
 - $\ \sigma \ not$ well known but should be small
 - Will have to consider ⁸⁸Y(n,γ)⁸⁹Y which also has unknown σ
- ⁸⁸Zr(p,n)⁸⁸Nb
 - Need sufficient # few MeV protons
- ⁸⁸Zr(n,2n)⁸⁷Zr
 - Threshold > 12.5 MeV neutrons

Production routes for ⁸⁹Zr in a reactor

Zr

Nb

Mo

- ⁹²Mo(n,α)⁸⁹Zr
 - Mo isotopes have no been observed so far nor should primary beam make it to setup
- ⁸⁹Nb(n,p)⁸⁹Zr
 - No way to produce enough ⁸⁹Nb to get ⁸⁹Zr
- ⁸⁹Y(p,n)⁸⁹Zr
 - Need sufficient # protons of several MeV energy
 - Peak σ at ~16 MeV protons
- ⁹⁰Zr(n,2n)⁸⁹Zr
 - From fragmentation there shouldn't be ⁹⁰Zr in sample

targets as a function of irradiation time

Populations of 88Zr (blue squares) and 89Zr (red circles) as a function of neutron fluence)

We determine the thermal neutron capture cross section of ⁸⁸Zr to be

861,000 <u>+</u> 69,000 barns

This is the second largest thermal neutron capture cross section ever measured. Only ¹³⁵Xe has a larger cross section.

J. A. Shusterman *et al.* Nature 565 (2019) 328

Conclusion

Nuclear forensics plays an important role in many areas of science, engineering, and security.