

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Decay Spectroscopy of Neutron-Rich Cadmium Around the N = 82 Shell Closure

Nikita Bernier, UWC and UniZulu

IX Tastes of Nuclear Physics, UniZulu

October 2nd, 2019.

What are atoms made of?

How were the elements made?

What are atoms made of?

1949: Shell model of nuclear structure

How were the elements made?

- 1939-1948: Big Bang and Stellar nucleosynthesis
- 1957: Heavy element nucleosynthesis

Today: study of exotic radioactive nuclei at accelerator facilities!

Increased binding energy at particular proton (Z) and neutron (N) numbers

- Full shell (closures) occur at magic numbers
- Closed proton shell and closed neutron shell in **doubly-magic** nucleus

Nucleon-nucleon interaction and mean-field potential

$$H = \left[\sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i=1}^{A} v(\vec{r_i})\right] + \left[\sum_{i \neq k}^{A} V(\vec{r_{i,k}}) - \sum_{i=1}^{A} v(\vec{r_i})\right]$$
$$= H^0 + W_{RES}$$

Nucleon-nucleon interaction and mean-field potential

$$H = \left[\sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i=1}^{A} v(\vec{r_i})\right] + \left[\sum_{i \neq k}^{A} V(\vec{r_{i,k}}) - \sum_{i=1}^{A} v(\vec{r_i})\right]$$
$$= H^0 + W_{RES}$$

W_{RES} = 0: Non-interacting shell model

$$H^{0} = \sum_{i=1}^{A} \frac{p_{i}^{2}}{2m} + \sum_{i}^{A} v\left(\vec{r_{i}}\right)$$

Choice of potential gives single-particle energy levels

$$V(r_i) = \frac{-V_0}{1 + \exp\left[(r_i - R)/a\right]} + V_{so}(r_i) \ \vec{l} \cdot \vec{s}$$

Some ground state properties (J^π) are reproduced

Nucleon-nucleon interaction and mean-field potential

$$H = \left[\sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i=1}^{A} v(\vec{r_i})\right] + \left[\sum_{i \neq k}^{A} V(\vec{r_{i,k}}) - \sum_{i=1}^{A} v(\vec{r_i})\right]$$
$$= H^0 + W_{RES}$$

- *W_{RES}* ≠ 0: Interacting shell model
 - Configuration mixing
 - Effective two-body (NN) matrix elements
- Recent developments:
 - Chiral effective field theory (3N)
 - Ab initio methods (many-body)

Valence space

- pp-cycle and CNO-cycle up to ¹⁶O, advanced burning up to ⁵⁶Fe
- Waiting point nuclei form the rapid neutron capture (*r*-) process path, which create half of the nuclei heavier than ⁵⁶Fe

- pp-cycle and CNO-cycle up to ¹⁶O, advanced burning up to ⁵⁶Fe
- Waiting point nuclei form the rapid neutron capture (*r*-) process path, which create half of the nuclei heavier than ⁵⁶Fe
- N = 82 isotope ¹³⁰Cd provides critical information on the **abundance peak** at $A \sim 130$.

TRIUMF

Supernova explosion (hot and cold *r*-process winds), and neutron star merger

$$\frac{n\left(A+1,Z\right)}{n\left(A,Z\right)} = n_n \cdot \sqrt[3]{\frac{A+1}{A}} \cdot \frac{2\pi\hbar^2}{k_B T \cdot m_u} \cdot \exp\left(-\frac{S_n}{k_B T}\right)$$

 Supernova explosion (hot and cold *r*-process winds), and neutron star merger

$$\frac{n\left(A+1,Z\right)}{n\left(A,Z\right)} = n_n \cdot \sqrt[3]{\frac{A+1}{A}} \cdot \frac{2\pi\hbar^2}{k_B T \cdot m_u} \cdot \exp\left(-\frac{S_n}{k_B T}\right)$$

- Defining nuclear physics parameters
 - Masses (S_n, Q_β)
 - β-decay lifetimes
 - β-delayed neutron emission probabilities rates
 - Shell structure far off stability

r-process sites

Neutron-rich nuclear decay

Е

Neutron-rich nuclear decay

Selection rules of β -decay

			Fermi	Gamow-Teller	
Transition Type	L	$\Delta \Pi$	ΔI	ΔI	$\log(ft)$
Allowed	0	No	0	(0), 1	$\sim 4.0 - 7.5$
First Forbidden	1	Yes	(0), 1	$0,\!1,\!2$	$\sim 6.0 - 9.0$
Second Forbidden	2	No	(1), 2	2,3	$\sim 10 - 13$

Е

Transition Type

Allowed

First Forbidden

Second Forbidden

 $\Delta \Pi$

No

Yes

No

L

0

 $\mathbf{2}$

 ΔI

0

(0),1

(1),2

 ΔI

(0),1

0,1,2

2,3

Neutron-rich nuclear decay

 $\log(ft)$

 $\sim 4.0 - 7.5$

 $\sim 6.0 - 9.0$

 $\sim 10 - 13$

 $|J_i - J_f| \leqslant L \leqslant J_i + J_f$ $\Pi(EL) = (-1)^L$ $\Pi(ML) = (-1)^{(L+1)}$

 ¹²⁸⁻¹³²Cd are neighboring the doubly-magic ¹³²Sn, which is central to shell model calculations and *r*-process simulations

	1288n 59.07 M	1298n 2.23 M	130Sn 3.72 M	131Sn 56.0 S	132Sn 39.7 S	133Sn 1.46 S	134Sn 1.050 S	1358n 530 MS	136Sn 0.25 S	
Z	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.03%	β-: 100.00% β-n: 17.00%	β-: 100.00% β-n: 21.00%	β-: 100.00% β-n: 30.00%	
49	127In 1.09 S	128In 0.84 S	129In 0.61 S	130In 0.29 S	131In 0.28 S	132In 0.207 S	133In 165 MS	134In 140 MS	135In 92 MS	
	0 . 100 0004		570 (10) ms	284 (10) ms	261 (3) ms	198 (2) ms	163 (7) ms	126 (7) ms	103 (5) ms	
	β-n≤ 0.03%	810 (30) ms	β-n: 0.25%	β-n: 0.93%	β-n≤ 2.00%	β-n: 6.30%	β-n: 85.00%	β-n: 65.00%	β-n	
48	126Cd	127Cd	128Cd	129Cd	130Cd	131Cd	132Cd	133Cd		
	0.515 \$	0.37 5	0.28 \$	0.27 \$	162 MS	68 MS	97 MS	57 MS		
	β-: 100.00%	β-: 100.00%	245 (5) ms	154 (8) ms 151 (15) ms	127 (2) ms β-n: 3.50%	98 (2) ms β-n: 3.50%	82 (4) ms β-n: 60.00%	64 (8) ms β-n		
	125Ag	126Ag	127Ag	128Ag	129Ag	130Ag				
	166 MS	107 MS	109 MS	58 MS	46 MS	≈ 50 MS				
47	β-: 100.00% β-n	β-: 100.00% β-n	β-: 100.00%	β-: 100.00% β-n	β-: 100.00% β-n	β-n β-				
46	124Pd 38 MS	125Pd >230 NS	126Pd >230 NS		128Pd >394 NS	Recent t _{1/2} measurements:				
	β-: 100.00%	β-n β-	β-n β-		β-n β-	Lorusso et al., PRL 114, 192501 (2015) Taprogge et al., PRC 91, 054324 (2015)				
	78	79	80	81	82	83	84	85	N	

 ¹²⁸⁻¹³²Cd are neighboring the doubly-magic ¹³²Sn, which is central to shell model calculations and *r*-process simulations

_									
	1288n 59.07 M	1298n 2.23 M	130Sn 3.72 M	131Sn 56.0 S	132Sn 39.7 S	133Sn 1.46 S	1348n 1.050 S	1358n 530 MS	136Sn 0.25 S
Z	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.03%	β-: 100.00% β-n: 17.00%	β-: 100.00% β-n: 21.00%	β-: 100.00% β-n: 30.00%
	127In 1.09 S	128In 0.84 S	129In 0.61 S	130In 0.29 S	131In 0.28 S	132In 0.207 S	133In 165 MS	134In 140 MS	135In 92 MS
49			>/0 (10) ms	284 (10) ms	261 (3) ms	10 (2) ms	163 (71)	126 (7) ms	103 (5) ms
15	β-: 100.00% β-n≤ 0.03%	810 (30) r.s	p-n: 0.25%	p.n: 0.93%	β-n≤ 2.00%	ß= o.30%	β-n: 0.5-00%	β-n: 65.00%	β-n
	126Cd	127 Cd	128Cd	1.25 Cd	130C.	131Cd	132Cd	1 33Cd	
40	0.515.5	0. <i>r</i> 1	0.26 5	.2. 5	102.15	08 (2) mc	97 MS	5 145	
48	β-: 100.00%	β-: 100. 0%	245 (5) ms	15 (8 ms 15 (7 5) ms	β-n: 3. 10%	β-n: 3.50%	82 (4) ms β-h: 60.00%	64 (8) ms β-h	
	125Ag 166 MS	126A 107 MS	127Ag	1 28Ag 58 MS	129Ag 46 MS	⇒ 50 ma			
47	β-: 100.00% β-n	β-: 100.00% β-n	β 100.00%	β-: 100.00% β-n	β-: 100.00% β-n	β-n β-			
	124Pd 38 MS	125Pd >230 NS	126Pd >230 NS		128Pd >394 NS	Recent t ₁	1/2 measur	ements:	
46	β-: 100.00%	β-n β-	β-n β-		β-n β-	Lorusso e Taprogge	et al., PRL e et al., PRC	114, 1925(C 91, 0543	01 (2015) 24 (2015)
	78	79	80	81	82	83	84	85	N

- 1988 experiment in Sweden: 7 transitions and 4 levels (1 isomer)
- Re-evaluated in 2015.

Work by B. Ekstrom quoted in B. Fogelberg, Nucl. Data for Sc. and Tech., **837** (1988)

Z. Elekes and J. Timar, Nucl. Data Sheets 129, 191 (2015)

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Background suppression by factors 10⁵-10⁶

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Background suppression by factors 10⁵-10⁶
- High statistics β-γ-γ with SCEPTAR : SCintillating Electron Positron Tagging Array

In-vacuum moving tape collector system

- Selective ionization with the Ion Guide Laser Ion Source [IG-LIS]
 - Background suppression by factors 10⁵-10⁶
- High statistics β-γ-γ with SCEPTAR : SCintillating Electron Positron Tagging Array
- 16 large-volume germanium GRIFFIN detectors dedicated to decay spectroscopy of the low-energy radioactive ion beams at TRIUMF.

In-vacuum moving tape collector system

Further discrimination of isobaric background:

 Identification of transitions by comparing laser on (Cd + In) and laser blocked (mostly In)

β-gated γ-singles

* Known ¹²⁸Cd→¹²⁸In

* *New* ¹²⁸Cd→¹²⁸In

β-γ-γ coincidence ¹²

32 new transitions and 11 new states

32 new transitions and 11 new states

- 32 new transitions and 11 new states
- Structure information from log(ft) values and angular correlations

- NuShellX (jj45pna)
- In-Medium Similarity Renormalization Group (IMSRG)

- NuShellX (jj45pna)
- In-Medium Similarity Renormalization Group (IMSRG)

• 7 transitions observed in ¹³¹In at ISOLDE, **23** at RIKEN: only **4** transitions in common

J. Taprogge et al., Eur. Phys. J. A 52, 347 (2016)

- 7 transitions observed in ¹³¹In at ISOLDE, 23 at RIKEN: only 4 transitions in common
- No γ -transitions observed from the β -decay of ¹³²Cd to ¹³²In.

J. Taprogge *et al.*, Eur. Phys. J. A **52**, 347 (2016)

J. Taprogge et al., Phys. Rev. Lett. 112, 132501 (2014)

β -decay of ¹³¹Cd ¹⁶

- Delivered at 0.7 pps
- Many transitions confirmed:
 5/7 (O. Arndt *et al.*, Acta Phys. Pol. B, 2009)
 21/23 (J. Taprogge *et al.*, Eur. Phys. J, 2016)
- One state in ¹³⁰In strongly populated by βn-decay

- Only one coincidence relationship observed
- 4 transitions placed based on energy differences

- 1 proton away from double shell closure
- Only single-particle excited states can be calculated

- Very low neutron separation energy → large neutron branching ratio
 - 988 keV transition expected in both ¹³¹⁻¹³²Cd datasets

Decay Spectroscopy of Neutron-Rich Cadmium Around the N = 82 Shell Closure

- ¹²⁸In: 32 new transitions and 11 new levels
- ¹³¹In: 8 transitions placed and 8 levels
- ¹³²Cd: Higher yields and cleaner beams required
- Would not have been possible without the discriminating power of IG-LIS
- Important inputs for theoretical models of the *r*-process and the nuclear structure of exotic isotopes
- Understanding of nuclear forces and shell evolution in a region which only recently became accessible for more extensive studies!

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you!

N. Bernier^{1,2}, I. Dillmann^{1,3}, R. Krücken^{1,2}, J. Holt¹,
C. Andreoiu⁴, G.C. Ball¹, H. Bidaman⁵, V. Bildstein⁵, P. Boubel⁵, M. Bowry¹,
C. Burbadge⁵, R. Caballero-Folch¹, M.R. Dunlop⁵, R. Dunlop⁵, L.J. Evitts^{1,6},
F. Garcia⁴, A.B. Garnsworthy¹, P.E. Garrett⁵, G. Hackman¹, S. Hallam^{1,6},
J. Henderson¹, S. Ilyushkin⁷, A. Jungclaus⁸, D. Kisliuk⁵, J. Lassen^{1,9}, R. Li¹,
E. MacConnachie¹, A.D. MacLean⁵, E. McGee⁵, M. Moukaddam¹, B. Olaizola⁵,
E. Padilla-Rodal¹⁰, J. Park^{1,2}, O. Paetkau¹, C.M. Petrache¹¹, J.L. Pore⁴,
A.J. Radich⁵, P. Ruotsalainen¹, J. Smallcombe¹, J.K. Smith¹, D. Southall¹²,
C.E. Svensson⁵, S.L. Tabor¹³, A. Teigelhöfer^{1,9}, M. Ticu⁴, J. Turko⁵, and T. Zidar⁵

1 TRIUMF 2 U of British Columbia 3 U of Victoria 4 Simon Fraser U 5 U of Guelph 6 U of Surrey 7 Colorado School of Mines 8 CSIC Madrid 9 U of Manitoba 10 U Nacional Autonoma de Mexico 11 CSNSM Orsay 12 U of Waterloo 13 Florida State U