
Rota%on-Par%cle	Coupling	

John	L.	Wood	
School	of	Physics	

Georgia	Ins%tute	of	Technology	

Fundamentals	of	Nuclear	Models:	Founda%onal	Models	
--David	J.	Rowe	and	JLW,	World	Scien%fic,	2010																			[R&W]	
+	second	volume	nearing	comple%on	
	



Rota%on-Par%cle	Coupling	
•  Many	(most)	nuclei	are	deformed	and	rotate	
•  Some	nuclei	with	spherical	ground	states	possess	
deformed	excited	states	

•  All	odd	and	odd-odd	nuclei	possess	unpaired	
par%cles	

•  Above	the	“pairing”	energy	gap,	all	even-even	nuclei	
possess	unpaired	par%cles	

UNDERSTANDING	ROTATIONAL-PARTICLE	COUPLING	IS		
A	FUNDAMENTAL	STEP	IN	THE	STUDY	OF	NUCLEAR	STRUCTURE		



Rigid	rotor	model	energy	ra%os	

   R4 = E(41
+) / E(21

+)        E(I) = A I(I + 1) 

R&W	Fig.	1.56	

A	~	(moment	of	iner%a)-1		



What	should	be	called	a	rotor?	

R&W	Fig.	1.56	

Applicability	of	rota%on-par%cle	coupling?	



Strongly	deformed	nuclei	

Shape	coexistence	region	

Established	strongly	deformed	

Expected	strongly	deformed	



Mul%-step	Coulomb	Excita%on	

Multiple-step Coulomb excitation (multi-Coulex) populates excited 
collective states in nuclei.

An incident nucleus is scattered by 
the Coulomb interaction with a 
target nucleus.

A close (“safe”) approach results in 
multiple Coulomb interactions only 
(no complication from strong 
interactions).

Level energies and transition 
strengths are deduced through γ -
ray spectroscopy.

Level lifetimes, quadrupole 
moments and transition matrix 
elements are deduced by a least-
squares fit to γ-ray yields.

Gammasphere:
110 Ge γ-ray detectors.

CHICO:
particle detector.

13Figure:	W.D.	Kulp,	Ga	Tech	



175Lu:	Coulex--40Ca;	“strong	coupling”	
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Figure 1.68: Coulomb excitation of 175Lu with 40Ca ions. Lines marked with a B are due to a target impurity.
The upper part of the figure shows the gamma-ray spectrum observed and the lower part shows the energy
levels of the associated decay scheme which form a good example of a rotational band. All energies are given
in keV. (The data are taken from Skensved P. et al. (1981), Nucl. Phys. A366, 125.)
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Symmetric-top	model:		
quantum	numbers		

R&W	Fig.	1.46	

the z-axis and the 3-axis 
are not in a rigidly  
oriented relationship 

R:	collec%ve	angular	momentum	
	
J:	intrinsic	spin	
	
I:	total	spin	/	angular	momentum	
	
M:	laboratory-frame,	
								z-component	of I 
	
K:		body-frame	(symmetry	axis),	
							3-component	of	I;	K	=	Ω 

J 

=Ω 



Symmetric-top	model:		
rota9onal-par9cle	coupling,	RPC	

R&W	Fig.	1.46	

RPC	term:	
		R�R	= (I – J)�(I –J)  
          =  I�I - 2 I�J + J�J 

J 

=Ω 

February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)

81

rot	

R2 ^	



The	key	concept	for	modeling	deformed	nuclei:	
the	symmetric-top	+	Nilsson	model	
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ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄
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Ĥ :=
~2R̂2
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the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
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~2ĵ2

2= ° ~2
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momentum of the odd-mass nucleus, then
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~2ĵ2
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“coupling”	=	add	Hamiltonians	
(wave	func%ons	will	be	direct	products)	
	

“coupling”	=	add	spins/angular	momenta	

INTRODUCTION	

FOCUS,	THIS	TALK	



Symmetric-top-plus-Nilsson	model	in	175Lu:	
organizes	34	states	into	5	rota%onal	bands		
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1 Elements of nuclear structure
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Figure 1.69: The low-lying states of 175Lu arranged into rotational bands. The moments of inertia, =, of the
bands can be estimated from EI = E0 + (~2/2=)I(I + 1) and are similar for all the bands (the irregularities
of the bands built on the 354 and 627 keV states are discussed in the text). (The data are taken from Nuclear
Data Sheets.)

Figure 1.70: The alignment of a single-
particle orbit in a spheroidal potential. Fig-
ures (a) and (b) show equipotential surfaces
for prolate and oblate potentials, respectively.
Figures (c) and (d) show equidensity surfaces
for 1h11/2 single-particle wave functions with
projection of the particle spin along the in-
trinsic symmetry 3-axis, having value ≠ =
1/2 in (c) and ≠ = 11/2 in (d). The ≠ = 1/2
state and the ≠ = 11/2 state have lowest
energy in a prolate and an oblate potential,
respectively.
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when ~!z°~!? ¿ hDl̂2+ª l̂·ŝi, the mixing of diÆerent eigenstates of ĥ≤ is small and
the single-particle energies are defined by the good (asymptotic) quantum numbers
N , nz, § (the eigenvalue of l̂z̄), and ≠ (the eigenvalue of ĵz̄).

A Nilsson model energy level diagram for the 50 < Z < 82 deformed region is
shown in Figure 1.71. As expected, each energy level is two-fold degenerate which
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Figure 1.71: A Nilsson diagram for protons in nuclei with 50 ∑ Z ∑ 82. Energies, in units of ~!0, are plotted
against the deformation parameter, ≤. Energy levels are labelled by their spherical shell model quantum
numbers, l and j, at ≤ = 0, and by the asymptotic quantum numbers ≠[Nnz§] for ≤ 6= 0. (The figure is
adapted from Lamm I.-L. (1969), Nucl. Phys. A125, 504.)
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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4.5 SO(5) matrix elements

where the integrand on the left-hand side is simply an angular-momentum L = 0,
SO(3)-coupled, product. The symmetry relationship

£

Yv
3

Æ
3

L
3

≠ Yv
2

Æ
2

L
2

≠ Yv
1

Æ
1

L
1

§

0

= (°1)L1

+L
2

°L
3

£

Yv
1

Æ
1

L
1

≠ Yv
2

Æ
2

L
2

≠ Yv
3

Æ
3

L
3

§

0
(4.158)

then shows that
p

2L1 + 1 (v3Æ3L3, v2Æ2L2kv1Æ1L1) hv1|||Ŷv
2

|||v3i
= (°1)L1

+L
2

°L
3

p

2L3 + 1 (v1Æ1L1, v2Æ2L2kv3Æ3L3) hv3|||Ŷv
2

|||v1i. (4.159)

From the sum rule
X

Æ
1

L
1

M
1

,Æ
2

L
2

M
2

,Æ
3

L
3

M
3

(v1Æ1L1M1, v2Æ2L2M2|v3Æ3L3M3)
2 = dim(v3), (4.160)

where

dim(v) = 1
6 (v + 1)(v + 2)(2v + 3) (4.161)

is the dimension of the SO(5) irrep48 of seniority v, and from Equation (4.152), we
also obtain the identity

X

Æ
1

L
1

,Æ
2

L
2

,Æ
3

L
3

(2L3 + 1)(v1Æ1L1, v2Æ2L2kv3Æ3L3)
2 = dim(v3). (4.162)

Thus, by squaring and summing both sides of Equation (4.159), we obtain

hv1|||Ŷv
2

|||v3i
hv3|||Ŷv

2

|||v1i
=

s

dim(v3)

dim(v1)
(4.163)

and the symmetry relation for SO(5) æ SO(3) Clebsch-Gordan coe±cients

(v3Æ3L3, v2Æ2L2kv1Æ1L1) = (°1)L1

+L
2

°L
3

s

dim(v1)

dim(v3)

(2L3 + 1)

(2L1 + 1)

£(v1Æ1L1, v2Æ2L2kv3Æ3L3). (4.164)

4.5.4 SO(5)-reduced matrix elements

The most important SO(5)-reduced matrix elements are those of the quadrupole
tensor, Q, required for the evaluation of E2 matrix elements, and those of the SO(3)
scalar, cos 3∞ = (4º/3)Y3100(∞,≠), in terms of which collective model potential
energies are expressed.

48The dimension of an SO(n) irrep is given in Section 5.12.12.
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.
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1.7 Low-energy collective structure in doubly-even nuclei

molecules and symmetric top molecules will be discussed in Volume 2). Thus,
within the framework of the rotor model, one interprets the even-I spin sequence as
implying a reflection symmetry of the nuclear rotor in a plane perpendicular to its
symmetry axis. An implication of such a symmetry is that the states |KIMi and
|°K, IMi appear in linear combination

|KIMi+ "(°1)I+K |°K, IMi, (1.50)

where " = ±1 according as the intrinsic wave function is symmetric or antisymmetric
under rotation through an angle º about an axis perpendicular to the symmetry
axis. One sees that, for a symmetric (" = 1) combination, the states of odd I vanish
when K = 0; only even values of I survive. For " = °1, a K = 0 band has an odd-I
only spin sequence; such bands are also seen.

In addition to their characteristic I(I +1) spectra, some distinguishing features
of a rotational nucleus are the huge values of the quadrupole moments of its I > 1
states. These are given in the rotor model by the product of an intrinsic quadrupole
moment, Q̄0(ÆK), characteristic of the rotor band, and a geometric factor which
depends on the angular momentum of the particular state;

Q(ÆKI) =
3K2 ° I(I + 1)

(I + 1)(2I + 3)
eQ̄0(ÆK), (1.51)

where Æ distinguishes bands with the same K. (Note, that as I increases for a given
K, Q(ÆKI) will change sign for K > 1/2.) The intrinsic quadrupole moment of a
rotational state can also be determined from the E2 transition rates between the
states of a rotor band, which have B(E2) values given by

B(E2;ÆKIi ! ÆKIf ) =
5

16º
(IiK, 20|IfK)2e2|Q̄0(ÆK)|2, (1.52)

where (IiK, 20|IfK) is a Clebsch-Gordan coe±cient.

1.7.3 Low-energy vibrational states in doubly-even nuclei

Figure 1.47 shows states at low energy in the singly-closed shell nucleus 118Sn that
are strongly excited in inelastic electron scattering. From the strength of excitation,
it is deduced that the first excited state at 1.23 MeV is a collective quadrupole
excitation and the excited state at 2.33 MeV is a collective octupole excitation. The
Iº = 4+ states at 2.28, 2.49, and 2.73 MeV indicate some hexadecapole collectivity,
but it is fragmented.

To infer the characters of collective excitations, such as seen in Figure 1.47,
it is necessary to consider them within the context of a larger pattern of states.
Figure 1.48(a) shows the states in 114,116,118Sn that have strong electric quadrupole
transitions to the first 2+ states.

The pattern is approximately that of a harmonic vibrator in all three nuclei.
Recall (Section 1.7.1) that, for harmonic vibrations, one expects a degenerate two-
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ε	=	+1	reflec%on	symmetric	
ε	=	-1	reflec%on	asymmetric	

δK,1/2 = 1, K = ½ 
δK,1/2 = 0 otherwise	

I+ := Ix + iIy , I- = Ix - iIy 
j+ := jx + ijy,  j- = jx - ijy  
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.

85

A = 10.0 keV  

1/2	[541]—175Lu	1/2	[411]—175Lu	



Symmetric-top-plus-Nilsson	model	in	175Lu:	
organizes	34	states	into	5	rota%onal	bands		

February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

1 Elements of nuclear structure

E(keV)

1000

500

0

1024

800

595

412

251

114

0

845

684

546

433

343

1167

886

798

673

562
515

415
371
353

1064

864

685

529

396

1020

990

773
757
633
627

others

175
71 104
 Lu

)

)

)

)

)

)
)
)

(

(

(

(

(

(
(
(

19/2+

17/2+

15/2+

13/2+

11/2+

9/2+

7/2+

13/2+

102815/2+

11/2+

9/2+

7/2+

5/2+

11/2+

9/2+

7/2+

5/2+
3/2+

1/2+

17/2–

15/2–

13/2–

11/2–

9/2–

5/2–

11/2–

112221/2–

17/2–

7/2–

13/2–

9/2–

3/2–

1/2–

15/2–

Figure 1.69: The low-lying states of 175Lu arranged into rotational bands. The moments of inertia, =, of the
bands can be estimated from EI = E0 + (~2/2=)I(I + 1) and are similar for all the bands (the irregularities
of the bands built on the 354 and 627 keV states are discussed in the text). (The data are taken from Nuclear
Data Sheets.)

Figure 1.70: The alignment of a single-
particle orbit in a spheroidal potential. Fig-
ures (a) and (b) show equipotential surfaces
for prolate and oblate potentials, respectively.
Figures (c) and (d) show equidensity surfaces
for 1h11/2 single-particle wave functions with
projection of the particle spin along the in-
trinsic symmetry 3-axis, having value ≠ =
1/2 in (c) and ≠ = 11/2 in (d). The ≠ = 1/2
state and the ≠ = 11/2 state have lowest
energy in a prolate and an oblate potential,
respectively.
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.
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1.8 Low-energy collective structure in odd nuclei

when ~!z°~!? ¿ hDl̂2+ª l̂·ŝi, the mixing of diÆerent eigenstates of ĥ≤ is small and
the single-particle energies are defined by the good (asymptotic) quantum numbers
N , nz, § (the eigenvalue of l̂z̄), and ≠ (the eigenvalue of ĵz̄).

A Nilsson model energy level diagram for the 50 < Z < 82 deformed region is
shown in Figure 1.71. As expected, each energy level is two-fold degenerate which
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.
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model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
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state rotational band of an even-nucleus core is given by

Ĥ :=
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2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation
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the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
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2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
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“coupling”	=	add	Hamiltonians	
(wave	func%ons	will	be	direct	products)	
	

“coupling”	=	add	spins/angular	momenta	
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MISCONCEPTION:	commonly,	use	
				A = ΔEI,I-2  / (4I – 2) 
  --yields	an	odd-even	staggering	and	conclusion	that		
the	unpaired	nucleon	blocks	pairing	which	is		
important	for	magnitudes	of	moments	of	inertia.	
CORRECTION:	use	
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“Coriolis”	contribu%on	to	energy	differences	

K	=	Ω	=	1/2	

J 
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I + ΔI 

ΔI = ΔR  
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<ΔI �J>  large 
	

K	=	Ω	=	max	

I + ΔI 

ΔI = ΔR  
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<ΔI �J>  ≈ 0 
	

Philosophical	point:	simple	effects	necessitate	simple	explana%ons	

A	vectorial	difference	
effect	
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The	“kink”	in	the	profile	is		
called	backbending	and	will	
be	a	major	focus	in	a	later	
lecture.	



CONCLUSIONS	
•  Odd-mass	nuclei	exhibit	bands	that	differ	from	the	neighboring	even-even	

nucleus	ground-state	bands	by	an	“alignment”	term	described	by	I�j.		
						Except	for	this	difference,	the	bands	are	iden5cal*.		
	
						CONSEQUENTLY,	there	is	no	evidence	for:	
•  odd-par%cle	“blocking”	of	correla%ons	involved	in	the	even-even	core	

collec%vity;	
•  “deforma%on-driving”	effects	caused	by	the	odd	par%cle;	
•  “Coriolis”	alignment	effects	(which	should	scale	with	increasing	rota%onal	
						frequency).		
			
*There	are	small	differences	which	can	be	a{ributed	to	band	mixing.	
			
	



177Lu	

176Yb	

404							g7/2	

Eγ	

400	

300	

200	

100	

2	 4	 6	 8	 10	 Ii	

82.1	

189.7	

102.9	

292.6	

96.8	

389.4	

87.7	

477.1	

413.7	

457.5	

-2.2	

-2.2	

-2.4	

-2.3	

268.8	

319.0	

367.4	

-1.9	

ê	

Energies	in	keV	

high	Ω		



177Lu	

176Yb	

514							h11/2	é	

Eγ	

400	

300	

200	

100	

2	 4	 6	 8	 10	 Ii	

82.1	

189.7	

102.9	

292.6	

96.8	

389.4	

87.7	

477.1	

301.1	

348.1	

393.4	

436.5	

477.3	

15.7	

17.1	

17.9	

18.7	

18.9	 Energies	in	keV	

intermediate	Ω		



NOTE:	reference	

Ii	

514							h9/2	

176Hf	

177Hf	
Eγ	

100	

400	

300	

200	

é	

2	 4	 6	 8	 10	

35.8	

33.9	

30.9	

36.6	

36.2	

35.1	

84.3	

201.8	

306.8	

105.0	

401.0	

94.2	

483.3	

82.3	 465.8	

426.5	

385.0	

341.7	

296.5	

249.7	

intermediate	Ω		

Energies	in	keV	



163Dy	
Eγ	

523							h9/2	

é	

Ii	

164Dy	

400	

300	

200	

100	

2	 4	 6	 8	 10	

24.1	

28.4	

31.9	

34.4	

36.6	

36.7	

37.3	

36.2	

73.4	

168.8	

259.1	

90.3	

342.4	

83.3	

75.2	

67.0	

484.6	

208.1	

248.0	

287.2	

324.6	

362.1	

397.1	

431.7	

167.3	

417.6	

Energies	in	keV	

intermediate	Ω		



2	 4	 6	 8	 10	
Ii	

100	

200	

300	

400	

169Tm	
Eγ	

541							h9/2	

é	

Energies	in	keV	

low	Ω		

168Er	
79.8	

184.3	

284.7	

379.6	

468.5	

85.1	

172.7	

263.1	

352.9	

-124.3	

-135.7	

-136.1	

-138.7	



E γ
(k
eV

) 	
400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

�	

642é	

Ii	

161Dy	

160Dy	
162Dy	

2.8	

E γ
(k
eV

) 	

400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

161Er	

160Er	
162Er	
642é	

Ii	

4.9	

E γ
(k
eV

) 	

400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

�	

165Er	

164Er	
166Er	
642é	

Ii	

3.2	

E γ
(k
eV

) 	

400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

�	

173Yb	

172Yb	
174Yb	
633é	

Ii	

2.2	

E γ
(k
eV

) 	

400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

178Hf	
180Hf	

179Hf	

624é	

Ii	

1.4	

E γ
(k
eV

) 	

400	

300	

200	

100	

2	 4	 6	 8	 10	 12	

�	

�	

�	

�	

�	

183W	

182W	
184W	
615é	

Ii	

1.0	

Ω	=	5/2		
	

Ω	=	5/2		
	

Ω	=	5/2		
	

Ω	=	7/2		
	

Ω	=	9/2		
	

Ω	=	11/2		
	

alignment	decreases	with:	
				increasing	deforma%on--increasing	M.	of	I.	
				increasing	Ω			

i	13/2	

February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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However , i n t he r egi on co > O. OSco° t he g- conf i gur at i on l oses i t s i dent i t y and i s no
l onger a usef ul r ef er ence.

I n t he backbendi ng r egi on t he g- band cr osses t he s- band ( f or a mor e car ef ul
di scussi on see subsect . 6. 3 and r ef s . ' z . s°) ) . Thi s cr ossi ng i s t heexper i ment al count er -
par t of t he l evel cr ossi ng at co = 0. 036coo i n f i g. 1 .

Onl y i n except i onel cases i s t he g- band measur ed beyond t he cr ossi ng. I n or der
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pol at e t he l owf r equency par t s of E~( m) and l â( co) . We use
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    iHarris  Harris	formula	fit	to		
even-even	core;	
then	subtract	iHarris			
from	I	to	get	ialign		
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Recall:	
	p = mv 
	
	L = Iω 



Alignment	of	402	and	404	recognized	under	name	
“iden%cal	bands”—25	years	ago	

VOLUME 69, NUMBER 10 PH YSjCAL REVIEW LETTERS 7 SEPTEM BER 1992

Low-Spin Identical Bands in Neighboring Odd-A and Even-Even Nuclei:
A Possible Challenge to Mean-Field Theories

C. Baktash, 3. D. Garrett, D. F. Winchell, and A. Smith
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371

(Received 3 February 1992)
A comprehensive study of odd-8 rotational bands in normally deformed rare-earth nuclei indicates

that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of
inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus
with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair
correlation, which predict variations of about 15% in the moments of inertia of configurations differing
by one unit in seniority.

PACS numbers: 21.10.Re, 21.60.Fw, 23.20.Lv, 27.70.+q

More than thirty years ago Bohr, Mottelson, and Pines
[1] suggested that short-range pairing interactions may
be responsible for the observed reduction of the moment
of inertia of deformed nuclei compared to that of a rigid
rotor. Shortly afterwards, this expectation was confirmed
by the first detailed application of the BCS pairing theory
[2] to nuclei [3]. A consequence of this interpretation is
that the moments of inertia associated with one-quasi-
particle states in odd-A nuclei should be larger than those
of the ground-state configurations of the neighboring
even-even nuclei [4].
Therefore, the recent discovery [5] of superdeformed

rotational bands in several [6-8] odd- and even-mass nu-
clei differing by a single nucleon that have identical y-ray
transition energies to within a few keV has received a
great deal of attention. Explanations of these "identical
bands" (IB) range from a simple, "accidental" cancella-
tion of the various terms associated with the contributions
of the valence nucleons to the moment of inertia [9,10],
to strong coupling of pseudo SU(3) orbitals to the even-
even core [11], and finally, to a suggestion of rotational
alignment of pseudospin [6,7]. All these explanations as-
sume that the largest contributing factor to the odd-even
difference in the moments of inertia, namely the pair
force, is substantially weakened for high-spin superde-
formed states. However, these scenarios would fail to ex-
plain identical bands at low spin, where the blocking of
the pairing contributions of the odd nucleon is predicted
to reduce the nuclear superfluidity, thereby increasing the
moment of inertia of the odd-A nucleus by about 15% for
rare-earth nuclei [3,12]. (Recent reports of IB's in near-
by even-even nuclei [13,14] compare bands which have
the same number of quasiparticles and, thus, do not probe
the effects of blocking on moments of inertia. )
The present Letter reports a systematic comparison of

nearly 200 odd-3 bands in normally deformed rare-earth
nuclei with their neighboring even-even isotone or isotope
having one less neutron or proton. The difference in the
dynamic moments of inertia J of the neighboring odd-
Z and even-even isotones is 2' for the low-spin part of
nearly 30% of the bands. This is much smaller than the
expected 15% increase. Such data present a serious chal-
lenge to the traditional picture of monopole pairing cor-

relations which has been in vogue for more than three
decades.
As an example, the decay sequences of three "identical

bands" in ' 'Lu are compared in Fig. 1 with a rotational
core defined by the yrast sequence of ' Yb, the neighbor-
ing isotone with one less proton [15]. The variations be-
tween the transition energies of the [404] 2 band in ' 'Lu
and the corresponding values in the ' Yb core are less
than 2 keV, indicating nearly equal dynamic moments of
inertia for these bands. In the context of the present pa-
per, bands in neighboring odd- and even-mass nuclei with
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FIG. l. (a) Comparison of the distribution of spin as a func-
tion of gamma-ray transition energy for a variety of seniority-
one configurations in '7'Lu and the x[404[ —, Sr[4021 —', config-
uration in ' Hf with that of the ground-state band in ' Yb.
(b) Alignment plots of the seniority-one and -two configurations
shown in (a) relative to the ground-state band of the ' Yb as a
function of the gamma-ray energy.
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It	is	difficult	to	reconcile	these	results	with	conven%onal	models	of	nuclear	pair	
correla%on,	which	predict	varia%ons	of	about	15%	in	the	moments	of	iner%a	of	
configura%ons	differing	by	one	unit	in	seniority*.	

*Seniority	=	number	
of	unpaired	nucleons	



Moments	of	iner%a,	M.	of	I.	and	pairing	
--sample	statements	

•  “The	iden%cal	bands	are	found	to	be	associated	with	up-sloping	par%cle	states,	
sugges%ng	that	the	cause	may	be	a	cancella%on	between	pairing	and	deforma%on	
decreases.”	

						--PRL	69	3448	(1992).	
	
•  “…BCS	[pairing]	theory	can	qualita%vely	reproduce	the	experimental	large	

fluctua%ons	in	the	M.	of	I.	which	is	helpful	to	understand	the	appearance	of	the	
normally	deformed	iden%cal	bands	in	an	odd-A		nucleus	and	its	even-even	
neighbors…”	

							—PR	C63	047306	(2001).	
	
•  “In	par%cular,	the	reduc%on		of	the	BCS	pairing	correla%ons	due	to	the	blocking		of	

one	and	two	orbitals	implies	large	changes	(up	to		30%)	in	the	moments		of	iner%a	
and	cannot	be	reconciled	with	these	[iden%cal	band]	systema%cs.”	

								--Annu.	Rev.	Nucl.	Part.	Sci.	45	485	(1995).		
	
	

	



Coriolis	Force	in	Nature	
Tropical	cyclone	Winston:	
Southern	hemisphere,	Fiji	

Hurricane	Maria:	
Northern	hemisphere,	Dominica	


