

## Fast Neutron Tomography

NEDA workshop Istanbul, September 2018





Willhelm Röntgen - 1895



## The first x-ray image





## x-ray computed tomography





Allan M. Cormack & Godfrey N. Hounsfield Nobel Prize in Medicine 1979



# x-ray computed tomography principle











### Penetration of radiation types





## Complementarity neutrons/photons



Thermal neutrons



X-rays

Radiograph of an analog camera: by neutrons (top) by X-rays (bottom). While X-rays are attenuated more effectively by heavier materials like metals, neutrons make it possible to image some light materials such as hydrogenous substances with high contrast: in the X-ray image, the metal parts of the photo apparatus are seen clearly, while the neutron radiograph shows details of the plastic parts.



# LICORNE: Applications of fast neutron tomography

- ☐ Border/airport security (e.g. detection of explosives in suitcases)
- Nuclear Industry: Characterisation of nuclear waste packages
- Archaeology: Imaging inside precious artifacts and objects

Collaboration with: IPN Orsay, University of York, IRMM, NEDA collaboration

+ Laboratoire d'Archéologie Moléculaire et Structurale











#### **LICORNE II**





H<sub>2</sub> pressure and low control system



Hydrogen gas cells



#### EPJ Web of Conferences

















#### Setup



**LICORNE**: inverse kinematic reaction p(7Li,n)7Be, strong collimated neutron beam

**NEDA**: arc of 19 neutron detectors







Arc of NEDA liquid scintillator detectors at 5m from the source

First in-beam use of NEDA

#### **Pulse Shape Analysis**



#### **PSA vs TOF**







- 6h run
- 1 translation/min
- 7Li primary beam: 16.30
  MeV
- Central NEDA detector









#### Neutron Image Reconstruction - Object 1



#### Neutron Image Reconstruction - Object 1



- 6h run
- 1 translation/min
- <sup>7</sup>Li primary beam: 15.25
  MeV
- Central NEDA detector

#### Neutron Image Reconstruction - Object 1



## Application of 'TomoPy'







## Conclusions

- Fast neutron tomography demonstrated with LICORNE beam
- First "in-beam" tests of NEDA
- Internal composition of objects reconstructed using backprojection and standard TomoPy algorithms
- Data available for others to analyse/improve algorithms
- IP relevant to some aspects of analysis to be protected
- Plans to further develop technique in the coming year likely request for further support from NEDA collaboration