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What	should	be	called	a	rotor?	

R&W	Fig.	1.56	

Applicability	of	rota%on-par%cle	coupling?	



Deformed	nuclei:	Z	≥	50,	N	≤	82		



	
Systema%c	of	E(21+)	for	Z	≥	50,	N	≤	82		

	

R&W	Fig.	1.36	
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The	key	concept	for	modeling	deformed	nuclei:	
the	symmetric-top	+	Nilsson	model	
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1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian

ĥ :=
p̂2

2M
+ 1

2M
£

!2
?(x̄

2 + ȳ2) + !2
z z̄

2
§

+Dl̂2 + ª l̂ · ŝ, (1.58)

where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation

!2
?R

2
x = !2

?R
2
y = !2

zR
2
x. (1.59)

For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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“coupling”	=	add	spins/angular	momenta	
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.
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	Quantum	mechanics	of	par%cle-rotor	coupling:		
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.
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additional condition that the γ multiplicity in the BGO ball
was 3 or higher. Time distributions of γ rays were measured
in a time window of 200 ns with respect to the prompt time
signal of the BGO crystals. From these events, γ γ matrices
as well as γ γ γ cubes were produced, both without a time
condition and requiring a prompt coincidence. For the latter,
two-dimensional gates on the prompt region in the energy-time
matrices of all 40 Ge detectors were applied individually. The
construction of the level scheme discussed in the next section
is based on the γ γ matrices and the γ γ γ cubes without a
particle coincidence requirement but with and without a time
condition.

To determine γ -ray multipole orders, directional angular
correlation ratios from oriented states (DCOs) have been
measured. For this purpose, γ γ events with one γ ray detected
in 1 of the 12 detectors at 35◦ and 145◦ and the other detected
in 1 of the 8 detectors at 72◦ and 108◦ relative to the beam
direction were sorted into an asymmetric coincidence matrix.
Then, using a coincidence gate on a stretched quadrupole
transition γgate, the ratio RDCO,

RDCO =
Iγ (at θ1 |γgate at θ2)
Iγ (at θ2 |γgate at θ1)

εθ2 (γ ) εθ1 (γgate)
εθ1 (γ ) εθ2(γgate)

,

is expected to be ≈1 for stretched quadrupole and ≈0.6 for pure
dipole transitions (θ1 = 35◦, 145◦, θ2 = 72◦, 108◦). εθ (γ ) are
the relative efficiencies of the detectors positioned at an angle
θ with respect to the beam at the energy Eγ .

III. THE LEVEL SCHEME OF 187Ir

The level scheme of 187Ir was established in the seventies
by Kemnitz et al. [15] and André et al. [16] using (α,xn)
reactions. Four rotational bands, with bandhead spins of 3/2+,
1/2+, 9/2−, and 11/2−, have been identified up to spins of

21/2+, 15/2+, 33/2−, and 23/2−, respectively. Based on the
comparison with neighboring nuclei and the observed band
characteristics, these bands were proposed in Refs. [15] and
[16] to be built on the 3/2+[402], 1/2+[400], 1/2−[541], and
11/2−[505] proton single-particle states. The band built on the
11/2− isomeric state (T1/2 = 152(12) ns [21]) was found to be
mainly fed from a state at an excitation energyof 2260 keV
via a few transitions that all show delayed components.
However, based on those data it was not possible to decide
whether this 2260-keV state itself is long-lived or is fed
from a higher-lying isomeric state via unobserved transitions.
Also, no decay time could be determined for the delayed
components. More recently, the 9/2− band was extended up to
spin 45/2− employing the (15N,4n) reaction and a discussion
of its properties presented [22].

In the present work, the 186W(7Li,6n) reaction was used
to populate 187Ir at a high angular momentum, with the aim
to localize the isomeric state and, possibly, to search for
new stuctures above it. A comprehensive level scheme was
established comprising 116 new excited states connected by
194 γ transitions that have been observed for the first time.
Spin and parity assignments have been made mainly based
on measured DCO ratios and theoretical electron conversion
coefficients.

In the following sections the different parts of the excitation
scheme of 187Ir are discussed in detail.

A. Extension of the known bands

The established rotational bands in 187Ir together with the
extensions proposed in the present work are shown in Fig. 1.
The ground-state band built on the 3/2+[402] orbital has been
extended up to spin 29/2+ via the observation of two additional
E2 transitions in each of the two signatures, namely, γ rays
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the  largest  B ( M I ,  ~,) for  a g w e n  level, respec twely  

bands, decay favorably into lower neighboring bands The comparison w~th e'~peri- 
mental cases in part II of this work wdl gwe evidence for this band leaking. 

0v) The spectrum at 7 = 60° and flA ~ = 5 is also shown in fig 13 for comparison 
Its low-energy part consists of a rather pure K = ~ = _1~_ and a K = Q = ~- band. 
When going into the tnaxlal region starting from 7 = 60°, the -~- a,ad ~ bands m~x 
with each other and with other higher bands, thus gradually losing their (K,O) 
character But it will be noUced that remainders of these bands, at least the lox~est 
members of the 3~_ band, can be identified all over the trmxlal region. 

(v) As a new feature, ad&tonal bands with v-band character K" = ~ + 2 ,  ~__+4, 
come down m energy m the trlaxlal region and take over as lowest excited states for 
7, < 30 °. For 7 approaching 0 °, the band heads of these addihonal bands form the 
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4.  C o n c l u s i o n  

The model of all odd nucleon coupled to a rotating tnaxlal core has been investi- 
gated with the aim of providing a basis for a systematic study of transmonal odd-A 
nuclei Concerning the coupling of  the odd nucleon to the core, the model covers 
the weak-couphng region (0 < f lA~< 4) as well as the strong-coupling region 
(flA ~ > 7) and describes the various intermediate regions as a function of the de- 
formation parameter flA ~ and the asymmetry parameter 7- The y-degree of  freedom 
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two-dimensional level patterns. In addition, . /may  have different projections s~ on the 
intrinsic axis, and thus a whole set of  these patterns labeled by s~ = j , j -  1 . . . .  arises. 

For  lower spin states, the interpretation of the (K~, ~2) assignments is more compli- 
cated and has been discussed in ref. 4). The proposed scheme is well based experimen- 
tally for lZgBa and may serve as a useful tool in analysing similar spectra. 

4.2. THE gzr SPECTRUM 
There is no direct evidence for 1,-deformation f rom the even parity band structure. 

However, because of the strongly coupled level order of  the spectrum consistent with 
a hole coupled to a prolate-type core, an attempt has been made to analyse this level 
structure also within the triaxial-core-plus-particle model. According to the Nilsson 
diagram, the g{ shell is completely filled for 129Ba and, therefore, the Fermi energy 
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“γ	vibra%ons”	of	the	prolate	spheroid:	
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Figure 1. Simplified 165Ho nucleus level scheme and observed γ transitions.

2. Experiments

The experiments were performed at the Heavy Ion Laboratory in Warsaw using the dedicated
Coulomb excitation setup called CUDAC (Coulex Universal Detector Array Chamber) [2] and
also with the OSIRIS multi-detector HPGe array.

The CUDAC setup uses 1 × 1 cm PIN-diodes for particle detection. As PIN-diodes
are not position-sensitive, information on particle detection angle is obtained by using many
diodes in one setup. The relatively small area of a single detector enables double-hits in the
particle detection setup to be avoided.

The particle energy measurement is not essential in Coulomb excitation experiments.
With thin targets the information on the particle scattering angle allows one to determine the
whole kinematics of the scattering process. However, the information on the particle energy
is useful to reject the events caused by noise or scattering on admixtures in the target. It is also
crucial when analysing the experiments with thick targets when the incident energy changes
due to the beam stopping in target.

During the measurements of Coulomb excitation of 165Ho, the CUDAC chamber was
equipped with 32 PIN-diodes, placed at backward angles (between 140◦ and 170◦). These
angles correspond to the strongest excitation of the investigated nucleus.

To detect the deexcitation γ -radiation three HPGe detectors were used, working in
coincidence with PIN-diodes.

A schematic view of the CUDAC setup is presented in figure 2.
A set of three experiments with 50 MeV 20Ne, 130 MeV 40Ar and 55 MeV 16O beams

were performed. All beam energies did not exceed the ‘safe’ bombarding energy for head-on
collisions, e.g. the distance of the closest approach of the colliding nuclei was in all cases
greater than 1.25

(
A

1/3
p + A

1/3
t

)
+ 5 fm [3].

Experiments with 20Ne and 40Ar beams were performed using CUDAC as a particle
detector for particle–γ coincidence. During the experiment with 40Ar an inclusive γ -energy
spectrum was collected in parallel to get additional Coulex information.

The experiment with the oxygen beam was performed with the OSIRIS array, without
detecting scattered particles.

In every case a thick (292 mg cm−2) metallic 165Ho target was used. The target was
isotopically pure as isotope 165 is the only stable isotope of holmium and it was thick enough
to stop all the recoils. The stopping time of the recoil was estimated to be about one order
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Table 3. M1 matrix elements in 165Ho.

Ii If ⟨If ∥M1∥Ii ⟩ (µn)

7/2− 9/2− 2.22 + 0.04
−0.04

7/2− 5/2−
K=3/2 −0.12 + 0.02

−0.02

7/2− 7/2−
K=3/2 −2.0 + 0.2

−0.5

9/2− 11/2− 2.82 + 0.08
−0.07

9/2− 7/2−
K=3/2 1.2 + 0.2

−0.3

11/2− 13/2− 4.00 + 0.07
−0.11

11/2− 11/2−
K=11/2 −0.16 + 0.02

−0.02

11/2− 13/2−
K=11/2 2.8 + 0.6

−0.5

13/2− 15/2− 5.1 + 0.3
−0.2

15/2− 17/2− 4.4 + 0.4
−0.2

17/2− 19/2− 4.1 + 0.8
−0.3

19/2− 21/2− 5.6 + 0.8
−1.4

3/2 5/2 7/2 9/2 11/2 13/2 15/2
spin [h]-
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Figure 5. ⟨Q2⟩ values determined for chosen states in the 165Ho nucleus.

One should note that although some of the matrix elements needed are not listed in table 2
because of the relatively large errors, they were also included in the calculation of ⟨Q2⟩. The
errors assigned, however, were taken into account in the determination of the invariants.

4.1. Results

Figure 5 shows the expectation values of the ⟨Q2⟩ invariant, calculated for chosen states in
different bands of the 165Ho nucleus.
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